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Abstract 
 

The collective representations of stimuli in neuronal populations of cat primary visual cortex 
were studied. Dynamical neuronal activity distributions of population responses (population 
representations) were constructed from measured individual cell’s responses to foveal stimuli 
over a defined stimulus parameter space, in our case the 2-dimensional retinal position. We 
used a set of “composite stimuli” based on combinations of “elementary stimuli” in order to 
induce and quantitatevly describe cooperative and competitive interactions. In contrast to 
classical approaches using optimized receptive field centered stimuli the method presented 
here requires the stimulation of a whole cell ensemble with an identical common stimulus. 
The constructed activity distribution allows a quantitative investigation of activation 
dynamics. We found lateral suppressive interactions to be mainly responsible for the observed 
nonlinear effects.  

Introduction 

The functional importance of cooperative effects in visual information processing gains 
increasing interest in both psychophysical and neurophysiological research [1,5,7,12]. 
Cooperativity leads to essential nonlinear effects in the information processing of sensory 
stimuli. Classical descriptions of cortical functions in terms of receptive fields appear 
incomplete in presence of strong cooperative effects [6,9,10]. Moreover, receptive field 
properties were shown to be highly context dependent [5], to process complex 
multidimensional tuning properties [11] and complex spatio-temporal transfer characteristics 
[2,3]. Therefore it is difficult to interprete single cells’ responses with respect to their 
implications for the global behaviour of the neural network. 

We propose to analyze nonlinear cooperative phenomena at the level of the dynamics of 
collective neural activation variables. We transform multineuronal data using a special 
population coding technique that was introduced for the analysis in the motor domain [4,8]. In 
a sensory domain population coding can be regarded as the projection of many single cells’ 
responses to a common stimulus into a space representing the stimulus parameter of interest. 
Here we study population responses in cat striate cortex to describe effects of distance 
dependent interactions of “composite” stimuli. This allows us to compare measured dynamical 
population representations of these stimuli with representations calculated by superposition of 
representations of the corresponding single (“elementary”) stimuli. 
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Materials and Methods 

1. Electrophysiological Recordings and Visual Stimuli 

In the foveal representation in area 17 of 21 anaesthetized cats 186 single units were recorded 
extracellularly using platinum electrodes. Stimuli were presented on a monitor (120 Hz) at a 
distance of 114 cm. To all neurons an identical set of flashing stimuli was presented randomly  

 

Fig. 1  A: A common stimulus (gray square) is presented within the stimulus 
grid irrespective of the location of individual receptive fields (gray 
ellipses); B: Common stimuli are presented along a line of 3.2° length; 
left – elementary stimuli; right – composite stimuli. 

at a fixed foveal position in the visual field (common stimuli). These were of two types:  
1) elementary stimuli, 8 squares (size 0.4 by 0.4°) randomly flashed along a line of 3.2° 
length, 2) composite stimuli, stimuli composed of 2 simultaneously flashed elementary stimuli 
separated by various distances (0.4°-2.8°), presented for 25 ms, at 0.6Hz, n presented = 32. 
(Fig. 1A,B). In addition, the location of the receptive fields of each individual cell as 
quantitatively measured with flashing stimuli (tuning stimuli) using the response plane 
technique (flashing spots of light, 0.40_ - 0.67_ diameter), randomly displayed on a grid, 
presented for 25 ms, at 1 Hz, presented n  = 25. The receptive field (RF) center for each 
individual cell was defined as the location of the mximum of its smoothed RF-profile (Fig. 
2A), which was obtained by mapping the response strength of individual cells onto the 
positions of the corresponding stimulus grid in visual space.  

The position of the common stimuli was not changed during the entire recording session, 
irrespective of the receptive field location of individual neurons (non-RF-centered approach, 
Fig. 1A). The firing rate of a neuron to a common stimulus was defined as the average 
response during 32 stimulus repetitions after stimulus onset within a single time window. The 
individual firing rates of the cells were normalized for their maximum fire rates to all tuning 
stimuli during any single 10 ms time window, 0 -100 ms after stimulus onset. 

2. Construction of population representations 

For a given stimulus, the contribution of each cell to the population response is its normalized 
actual firing rate in parameter space (x,y) centered at its RF-center location (Fig. 2B). To 
achieve an interpolated and smooth activity distribution, spatial lowpass filtering was 
performed by weighting individual firing rates with a gaussian profile.  
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Fig. 2: Construction of a smooth, interpolated neural activity distribution in a 
visual stimulus space. A: RF-profiles are derived from the single cells’ 
responses to tuning stimuli. RF-centers are defined as the locations of 
maxima of smoothed individual RF-profiles in the visual space relative to 
the common stimulus raster. The position of an elementary stimulus is 
indicated by a gray square within the stimulus raster; B: individual cell 
responses are normalized for maximum activity and placed in the visual 
field as delta functions according to their RF-centers (arrow), providing 
a raw activation distribrution. The height of the lines correspond to the 
response strength of individual cells to a stimulus (white square); C: the 
raw distribution is interpolated and corrected for sample density; D: the 
same data as shown in C, presented graylevel-coded in 2 dimensions. 
Axes indicate degrees in visual stimulus space 

Thus, the contribution of each cell is given as a gaussian profile (sigma = 0.4_ in visual space) 
in the parameter space (x,y) centered at its RF-center location and with a height proportional 
to its actual firing rate. 

To correct for sampling density, the interpolated population activity distribution is divided by 
a distribution equally constructed from equal individual cell activations of 1. The result is an 
interpolated population activity distribution taking into account irregularities in the sampling 
density (Fig. 2C,D). 
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Results 

1. Elementary stimuli - representation of retinal position 

a) Within activity distributions based on projections of population responses to elementary 
stimuli into the visual field we observe areas of raised activity close to elementary stimulus 
positions. The size of these areas resembles average single cell receptive field sizes (Fig. 3A). 
The location of maxima of activity distributions displays the actual position of a given 
stimulus in the visual field with considerable accuracy (mean deviation from 0.14°).  

b) Studying the population representations with a “time-slice technique” revealed a gradual 
and coherent evolution of the activity distributions in time and space (Fig. 4A). This is 
remarkable in view of the complex spatial-temporal structure of the single cells’ receptive 
fields.  

c) The observed accurate reconstruction of each stimulus position is the prerequisite for 
analyzing interactions of the composite stimuli in terms of parametrical (retinal) space.  

2. Composite stimuli 

a) Nonlinear interactions were analyzed by comparing the measured population responses to 
composite stimuli with the calculated linear superposition of the corresponding elementary 
stimulus representations. The spatial structure of the activity distributions induced by 
composite stimuli resemble the spatial structure of those for superpositions (Fig. 3B). 

b) As the most striking interaction effect we found a stimulus distance dependent suppression 
of the population response. It was greatest for small distances of stimulus components (Fig. 
3B and Fig. 6A). 

c) The temporal evolution of activity distributions for representations of composite stimuli 
differed from those of superimposed representations of elementary stimuli. Dependent on the 
distance of stimulus components, they reached their maximal activity up to 5ms earlier (Fig. 
4B, Fig. 5 and Fig. 6B). This shift in the latency for maximal activity was mainly due to a 
delayed onset of suppressive interactions (Fig. 5). The latency of maximal suppression 
correlated with stimulus distance (Fig. 5 and Fig. 6B). The distance-dependent temporal 
evolution of suppressive and fascilitatory interactions at stimulus positions is summarized in 
Fig. 6C.  

d) We compared activity distributions for composite stimuli and their corresponding 
superpositions, both normalized for their maxima, and found spatial distortions. The most 
prominent effects are: (1) a reduction in the size of areas with raised activity, leading to a 
sharpening of both activity peaks (Fig. 7) and (2) a deepening of the valleys separating the two 
peaks of the activity distributions. 

e) The spatial distortions, like the global suppression described above, appeared with a 
temporal delay of several milliseconds after the onset of activity. As the onsets of suppression 
and spatial distortions lye within a time window of 50 to 55ms, we suggest that both 
interaction effects are mediated by common mechanisms.  
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Fig. 3: Static population representations of elementary and composite stimuli, 
calculated by projecting and interpolating neuronal activities of 186 
single units into the visual field. The graylevel-coded activity 
distributions are based on the summarized responses within 40-70ms 
after stimulus onset. The displayed visual field area covers 3.6_ by 3.6_. 
Activity levels are additionaly indicated by equidistant contour lines 
(5%-steps), with the 50%-contour-line strenghtend; A: activity 
distributions of elementary stimuli; B: the observed interaction effects 
are examplified in the comparison of measured activity distributions for 
four stimulus distances (d1, d3, d5, d7) and the corresponding calculated 
superpositions (s1, s3, s5, s7), which were obtained by superimposing 
activity distributions induced by their elementary components.  
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Fig.4: Dynamic population representations in visual coordinates induced by 
elementary and composite stimuli; A: spatio-temporal activity 
distributions induced by elementary stimuli evolve coherently in time;  
B: comparison of the temporal evolution of the activity distributions 
induced by two different composite stimuli and their corresponding 
superpositions.  

 

Fig.5: Temporal evolution of amplitudes of activity distributions at stimulus 
location in visual space for 4 different distances during the first 100ms 
after stimulus onset. Upper row: composite stimuli (black) and 
elementary stimuli (gray); middle row: composite stimuli (gray) and the 
corresponding superpositions (black); lower row: difference of both 
curves as an indication for the degree of suppression or fascilitation. 
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Fig.6: Dependence of various parameters on distance of stimulus components 
(indicated on x-axis in degree visual angle) at stimulus position;             
A: 1) percentual deviation of maximal response strength induced by 
composite stimuli from responses to elementary stimuli (gray) and their 
superposition (gray) and 2) maximal suppression (dashed) during the 
first 100ms after stimulus-onset. B: Latency of maximal response for 
composite stimulus (black line), superposition (gray line), and maximal 
suppression (dashed line). C: Spatio-temporal “interaction kernel”. The 
temporal evolution of suppression or fascilitation of responses to double 
stimuli is given as the difference between the response strength 

Conclusion 

The population coding technique was shown to be an appropriate tool for the analysis of 
cortical dynamics. The method enables us to construct a collective neural activity distribution 
(population representation) over a defined parameter space, in our case the retinal spatial 
coordinates. This population representation is a projection of information distributed across a 
large number of neurons into a parametrical space defined for abstract variables. Therefore it 
specifies the meaning of the activity of single cells and their complex tuning properties to the 
global function in the cortex independently of the constraints of cortical anatomical maps. 
Even more, the population coding method displays multineuronal data in “psychophysical 
coordinates” and could be used to directly predict psychophysical observations from the 
spatio-temporal activity distributions.  
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Fig.7: Spatial distortions in activity distribution s for composite stimuli 
(experiment) compared to the corresponding superpositions 
(superposition) for various distances of stimulus components. The 
activity distributions were normalized for their maximal amplitudes. 
Left: Temporal evolution of the size of areas, where the amplitude 
exceeds 50% of the maximal amplitude (y-axis: size in square degrees). 
Right: Temporal evolution of the ampitude of the separating valleys 
between the maxima at stimulus location (left y-axis: height of the 
maxima at stimulus location; right y-axis: height of the valley minima in 
percent of the maximal amplitude at stimulus location). 

The experimental paradigms have to be adapted to the population coding method. All cells of 
the sampled ensemble must be stimulated by identical common stimuli independently of the 
single cells’ receptive field properties and locations in the visual field (non RF-centered 
approach). Stimulus parameters should not be “optimized” in order to achieve high firing rates 
for individual cells.  

Since the population representation is compatible with neural field models, we could 
demonstrate that a Wilson & Cowan model [14] could accurately predict the deviations in 
temporal evolution of activity induced by composite stimuli in a recent paper [13]. Here we 
present additional spatio-temporal effects. The time course of these effects parallels the global 
suppression, suggesting a common mechanism. To explain the observed spatial distortions 
(smaller size of activated area, better separation of activity peaks), we propose long-range 
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lateral inhibitory connections and short-range excitatory connections in parametrical 
coordinates. Since the lateral interactions lead to a sharpening in the spatio-temporal 
resolution of composite stimuli, one biological function could be a contrast gain via a gain-
control mechanism [15]. The fact that the onset of the spatio-temporal interactions is delayed 
for several milliseconds after the onset of activity in the population representation is a strong 
indication for the mediation or at least induction of the observed interactions by cortical 
connectivity.  
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