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Abstract 

 The problem of ECG analysis to find dynamical signatures of the heart-brain interaction is 
considered. Several methods are applied to study three groups of ECG signals: those of healthy 
people, patients after  myocardial infarction (AMI) and animals without direct heart-brain 
interaction (WHBI). It is shown that there are ECG features allowing to distinguish 
statistically significantly the mentioned groups of ECG signals.  

Introduction  

It is well known [1,2] that the nature of the heart-brain interaction is very complex and 
different aspects regarding this topic should be studied. In particular, the systematic investigation 
of EEG and ECG signals is useful to receive features characterizing such an interaction. Here, 
several methods were applied to the analysis of three groups of ECG signals. The signals of 
healthy people (20 subjects), patients after myocardial infarction (AMI, 20 patients) and animals 
without direct heart-brain interaction (WHBI, 7 animals) were analyzed, respectively. The 
following parameters of the signals were studied: 

1. The dynamics of signals, i.e., the deterministic chaotic (generated by a strange 
attractor) or stochastic (random) one. 
2. The presence of ECG segments with different both statistical (the probability 
density) and dynamical (chaotic or stochastic) properties. 
3. The spectral peculiarities based on values of the local Lyapunov exponents. 

The dynamics of a signal (the point 1) was determined by a version of the nonlinear forecasting 
technique after embedding of the signal in a certain multidimensional space. The spectral 
peculiarities (the point 3) were received by the order-q spectral method after selecting ECG 
segments with approximately equal values of the local Lyapunov exponents. This method allows 
to detect periodicities which appear in segments rarely occurred.  

In the following sections, we present the methods used and results received. 

The dynamics of ECG signals 

To study the dynamics of a signal, it is necessary to apply an appropriate numerical criterion. 
Recently, a few criteria were proposed for this purpose [3-6]. Here, we apply the method 
described in ref.[6]. The reason of this choice is based on features as follows: 

• a coefficient characterizing the dynamics shows a clear distinction between the 
chaotic behaviour and the stochastic one; 

• a procedure for calculating of this coefficient is quick enough. 
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Denote by s s s N( ), ( ),..., ( )1 2  the time points of some one-dimensional time series. Using the 
Takens' embedding procedure [5,8], we receive the sequence of vectors 
 
x(j) = (s(j),s(j+ L),...,s(j+ (E -1)L), j = 1,...,N - (E -1)L.   

 
Here, the embedding dimension and the lag time are designated by E and L, respectively. The 
embedding parameters E and L are chosen by using the methods [14] or by minimizing a 
translation error considered below. 

Let x x xk1 2, ,..., be the k nearest neighbours of some point x0 . Next, designate by  y1, ,...y yk2  

the images of  x x xk1 2, ,...,  after  one time step [8]. The translation vector ν j = −y xi i  and its 
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where the Euclidean length is designated by ||.||. It was shown [6] that the translation error tre  is 
greater than or equal to unit for the Gaussian noise. We also verified this inference for a strongly 
non-Gaussian noise with the K-distribution probability density [7]. At the same time, tre ≤ 01.  for 
the Henon attractor that is significantly less than the value of tre  for the Gaussian noise. The same 
ranges of the translation error were received for other attractors, including the logistic map and 
the Lorenz system [8]. Thus, translation error is a "good" discriminator between the stochastic 
and deterministic time series. This inference is correct if the length of time series is not too small.  

Non-parametric segmentation 

Next, some statistical characteristics of ECG time series were studied to distinguish 
statistically significantly the mentioned groups of signals. Notice that the four first moments of 
the probability density (i.e., mean, variance, asymmetry, excess) were useless to reveal the 
statistically  
significant difference between the signals from the groups. A regression simulation of the signals 
was also unsatisfactory. Then, segmentation properties [9,10] of ECG time series were 
investigated. This means that a time series is divided into some parts (segments) according to a 
certain criterion of the probability density. 

The segmentation-based approach has earlier been applied to an analysis of heart rate 
variability ([10]). However, such an analysis does not take into account other significant 
characteristics of ECG signal. Therefore, we analyzed all time points in the considered signals by 
the segmentation-based approach [11]. The non-parametric segmentation algorithm [11] was 
chosen here since it has the advantages as follows. First, this algorithm is non-parametric without 
any constraining assumptions. Second, the dynamic programming method used here allows to 
resolve the corresponding minimization problem. Third, a simple procedure based on the 
probability density can be applied to classify the segments. At the same time, we believe that 
other algorithms of segmentation (in particular, based on the generalized likehood ratio) can also 
be used here. 
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Let the time series consists of K homogeneous segments. The term "homogenous" means that 
each segment can be characterized by a stationary random process with some constant (for this 
segment) function of the probability density. The statistical properties of the segments are 
changed abruptly in certain points which are bounds between the segments. These bounds are 
designated by jT j K, ,...,= −1 1; the length of j th segment is denoted by jτ . Then the initial 

time series  s s s N( ), ( ),..., ( )1 2  can be presented as a sum of segments ( )1X X k,..., ,where 

( )j j jX s T s T= +−( ),..., ( )1 1 and  j j jT T j K T= + = − =−1 01 1 0τ ,( ,..., , ).   

It is also assumed that a complete set of the probability densities of the segments 
represents a family of thrice continuously differentiable functions. These functions and their 
derivatives should be limited. Furthermore, the following condition is imposed for any function 
p s( )  of the probability density: 

( )m

R

A p p s ds m= < ∞ =∫ ( ) , , , .1 2 3    

The estimation of the distance between the segments is carried out by 
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where ip  is the non-parametric probability density in the Rosenblatt-Parzen sense for the 
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The smoothing constant iH  is determined for every i th segment 

i i i iH b T T=
−

−− α
( )1 where α > 0 and ib > 0. A value of the integral in (1) is estimated by the 

well-known Simpson formula.  
The one-dimensional version of the algorithm [11] is applied here because all the ECG 

signals are scalar. The normalized distance between classes (segments) is denoted by  

r r T T T Tj j j j j j j j1 2 1 2 1 1 2 21 1= − −( , , , ).  

Here, an estimate of the probability density computed by (2) for any time series assuming its 
homogeneity is used.  

Notice that the quantity of segments K  and the lengths of segments 1 1τ τ,..., k −   are 
unknown. At the same time, it is supposed that minimal and maximal values of these parameters 
are predetermined beforehand, i.e.,  
1 5 1 1< < < < = −K i K, , ( ,..., ).min maxτ τ τ   

Hence, the functional to be minimized is expressed as follows  
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The function 1g ( , )τ τ ′  defines some two-dimensional probability density for the lengths of 

segments τ = − −i iT T 1and ′ = −+τ i iT T1 . 
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Thus, the functional R  represents the averaged with weights (over all ( )K − 1  changes of 
the probability density) the value of the distance between the segments. Hence, the evaluation of 
the quantity of segments K  and the moments of changes iT   is obtained by the solution of the 
following optimization problem  

R K iT
T i

K
( , ) max max,⇒  

where K   falls into some admissible set kA .  Usually, kA  is a set of integers within the band 

lying from a minimum minK   to maximum maxK , respectively. The length of the segment 
iτ  is 

also limited within the range min max.τ τ τ< < , where minτ   and max.τ  are chosen taking into 
account the quantity and other features of data.  

A maximization of R is carried out by the dynamic programming technique separately for 
every  K  from kA . . Here, the conditions  

i i iT T T N k i K− −+ ≤ ≤ + − − = −1 1 1 1 1min max minmin{ , ( ) ), ,..., .τ τ τ  

should be satisfied.  
A classification of the received segments can be performed by methods described, for 

example, in [12]. Here, the following simple approach is applied. If we would like to obtain L  
classes from K  segments, the ( )K L− -step procedure is used. For the first step, the quantity of 
classes is assumed to be ′ =L K . Using the criterion of the minimal normalized distance between 
the segments 

kl k i k l i l
i

r T T T T i k l L( , , , ) min, ,− − → ≤ ≤ ≤ ′  

the numbers ( , )′ ′k l  of the most nearest segments  are found. Then these two segments are 
unified in a new one segment with the number ′k . Respectively, the quantity of classes to be 
considered is diminished to ′ = −L K 1. This procedure is repeated up to the limit  ′ =L L.   
Then, the procedure of classification is completed and segments falling into every class are 
determined. 

Hence, the segmentation parameters were evaluated for the analyzed groups of signals. 
Here, the computations were carried out for the number of segmentation points from one to four. 
If one segmentation point is considered, then both the position of this point and the normalized 
distance (ND) between the segments  were taken into account to distinguish the groups. Since the 
size of registered ECG data is too large to apply the segmentation procedure directly, three values 
of N were applied: N =300, 500 and 1000. To increase the robustness of the procedure, the 
obtained parameters were estimated for 10 consecutive intervals, where each interval has N  
points, with the following averaging.  

In the case when the number of segmentation points is larger than one, the following 
parameters were taken into account:  

• the position of segmentation points; 

• two minimal values of ND between the nearest (according to ND) segments;  

• the numbers of segments unified into the first and second class, respectively; 

• the averaged ND between the classes. 
Thus, the most significant parameters of the segmentation procedure were analyzed to find 

the differences between the groups. 

The order-q power spectrum 
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It is known that features of the ECG periodicities can be useful to characterize some heart 
abnormalities. For example, the spectral parameters of heart rate variability (HRV) and spectral-
temporal analysis of signal-averaged ECG (STA) are applied for this purpose. However, the 
conventional spectral parameters (including those of HRV and STA) were not efficient enough in 
our situation. Notice also that the mentioned spectral parameters are characteristics of the whole 
signal or the most typical cardiac complex. At the same time, there is the possibility that some 
cardiac disorders cause periodical components in ECG segments rarely occurred. The number of 
the segments and their bounds are not known beforehand. 

Recently, a new method called the order-q power spectrum was proposed to detect the 
order-q periodicities in time series [13]. These periodicities appear in segments with certain 
characteristics of the nonlinear dynamics. Here, we give a simplified version of the method 
basing on the fact that different segments of an ECG signal have, on the whole, different 
informational features. These features can be purely statistical (e.g., mean, variance, probability 
density) or dynamical. The latter are intended to describe the deterministic dynamics of the signal 
in a certain phase space. 

Since the periodicities lead to the deterministic dynamics, we can select appropriate 
segments based on characteristics of this dynamics. Here, values of the local Lyapunov exponents 
were used. It should also be noticed that the local Lyapunov exponents are essential 
characteristics of the time behaviour of the signal considered [5,8]. In particular, a nonlinear local 
predictability can be evaluated by these characteristics. 

 The values of the local Lyapunov exponents are computed for each point of a time 
series. Then, the whole time series is divided into segments with different averaged 
magnitudes of the local Lyapunov exponents. Next, new components are received by 
joining of segments with approximately equal these magnitudes. The components are 
analyzed by the conventional spectral method. The following parameters of the this 
nonlinear method were estimated: 

  1. The amplitude of the main (highest) spectral peak;  
2. The position (i.e., the frequency value) of this peak. 

Here, we describe shortly the method allowing to find the order-q periodicities [13]. Let, as 
earlier, we have one-dimensional time series s s s N( ), ( ),..., ( )1 2  which is divided into k  
segments. Each segment contains n  points. The order-q power spectrum qI ( )ω  is calculated by 

selecting of the segments with equal averaged values nΛ  of the local Lyapunov exponents iλ  
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Here, ⋅ ⋅ ⋅  designates the time average over all the segments. The power spectrum I n( , )ω  for 

every selected segment is calculated in the conventional way 
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Notice that the values i iλ , , , ,...= 012  are estimated along the trajectory in phase space and they 
are taken into account as a new time series. 

The groups of signals were compared by the spectral parameters obtained from the 
components chosen, as mentioned, at the same averaged values of the local Lyapunov exponents. 
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Summary 

We have a few findings in the present study. In particular, it was found that the WHBI 
signals are deterministic while the other signals have, as a rule, the stochastic or intermediate 
dynamics. The ECG time series of patients after myocardial infarction are more deterministic 
(i.e., close to the WHBI signals) than those of the healthy people (p<0.05 by the Mann-Whitney 
nonparametric test). The segments with different (in the statistically significant sense) probability 
density functions were not received for all the signals. However, the groups were discerned by the 
distance between the probability densities of the segments (p<0.05). Using the order-q method, 
specific spectral components were found for each of the three groups of signals (p<0.01). Thus, 
there are the ECG characteristics allowing to distinguish statistically significantly the ECG 
signals recorded without the heart-brain interaction. According to values of these characteristics, 
the signals for the patients after myocardial infarction are closer to the WHBI signals than those 
of the healthy people. 
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