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Abstract – In different technical fields, relative delays of signals 
define the function. In case of Radar, Sonar, GPS, digital filter, 
optics, earthquake prediction or nerve nets they play the main 
important rule. Trying to extract the main structur al 
information of all these different techniques, most of them 
become decomposed into delays (edges) and operators (nodes). 
Binding nodes additional to spherical coordinates and 
suggesting, all information needs time to bridge spaces, and 
larger delays imply larger edges, resulting delay graphs get 
spherical properties. Time- and space-functions characterize 
the flow of information in such nets. They flow wave-like, 
giving specific possibilities for a better understanding of field 
properties. Integration about combination (sum, 
multiplication, fuzzy sum) of space functions at nodes, called 
‘interference integral’, shows the relation between time-
function and image – also optical images show interference 
integral properties. We will call the abstraction ‘Interference 
Network (IN)’. Following this way, IN shows a physical 
connection between seeing and hearing, between time-function 
and image, independent of the physical substrate or delay 
space, that means acoustic, optic, ionic (nerve-like) or electric 
delaying spaces. The term ‘interference networks’ contributes 
the fact, that most of analysis in physics is done today with 
numeric discretisation.  

“Mathematics is an experimental science,  
definitions do not come first, but later on.” 

Oliver Heaviside 

I. INTRODUCTION 

Thinking about Radar for cars, per coincidence I found 
1992, that nerve nets project images like optical lens 
systems only mirroring. This was (sorry: is up to now) new 
in neuroscience, but predictable for engineers in optics, 
Sonar or Radar developments. The thumb-experiment [2] 
showed 1992 predictable wave-like nerve-properties. New 
applications were first acoustic images and films – not 
known in acoustics [16]. So what is the common knowledge 
between Radar, nerve net, and acoustics?  

General ideas for IN were born in the years 1992/1993 as 
an attempt to understand something more about nerve 
networks [3]. The term ‘Interference Networks’ appeared 
later to set some boundaries to theories of ‘Artificial Neural 
Networks (ANN)’. Find an introduction in [12]. 

Analyzing the flow of information in delaying systems, a 
common knowledge stands behind approaches using delays. 

Independent of the medium, in different fields we find 
comparable technologies for information processing: 

• Acoustic imaging:  
• Supersonic Arrays  
• A, B, M – methods  
• SONAR 
• Electric field imaging and localization: 
• Global Positioning System (GPS) 
• RADAR 
• Radio telescopie and –interferometrie: 
• Superimposition of images - VLA 
• Superimposition of time functions – SKA 
• Optical projection systems 
• Nerve nets (ionic conduction) 
• EKG, EEG 
• Artificial neural nets 
• Integrated circuits 
• Quantum mechanics 

Most of the technologies use different ‘languages’, which 
means, each direction uses own codes and abbreviations. It 
is sometimes not easy to understand details. Some of the 
common technologies in all fields are integral-
transformations, like 

• Correlation 
• Modulation  
• Convolution  
• Fourier-transformation 
• Wavelet-transformation 

If we think about common properties, it is to hope IN- 
abstraction can push the different directions, learning from 
the other. IN tries to appear as a common language, 
knowledge and simplest abstraction layer.  

Sorted by task, we find applicable fields for IN: 

• Spatial techniques 
• Optical projections 
• GPS 
• Radio telescopie 
• Radar 
• Antenna construction 
• Sonar 
• Acoustic cameras 
• Temporal tasks 
• Digital filter 
• Frequency maps 
• Nyquist plots 
• Coding tasks 
• Neural nets 
• Cell phones 



• Digital circuits 
• State machines 

The fields use common knowledge about differential 
equations, angular frequencies, complex numbers, time 
functions, wavelengths, velocities, and delays. However, the 
specific knowledge in the fields is very different and 
complex. 

Periodic waves occupy nearly all approaches, suggesting 
waves are always periodic. For example, the wave and the 
wave function in Wikipedia [10] define periodic wave 
functions using complex numbers and angular frequencies. 
Non-periodic character of IN approach shows, this is 
definitely not true. In describe non-periodic or periodic 
waves.  

The document shows, that non-periodic ‘time-function 
waves’ exist in time domain. They have interesting 
properties, for example to understand nerve nets or to reach 
ultra-high speeds in integrated circuit design. Waves appear 
as a generalizing term including non-periodic and periodic 
case, although the paper is to focus exclusively on properties 
of non-periodic waves.  

Analyzing the probable location of a signal, IN suggest 
‘waves of information distribution’. A concept for wave 
visualization gives the chance to understand interference 
systems of any kind clearer. Integration over wave fields in 
time produces locations for valid signal conjunctions, and in 
an optical association the term ‘image’. We find a concept 
of synchronization without clocks in nerve nets.  

The lecture will be the first attempt, to start a cautious, 
formal characterization of IN. 

II. SYNCROTOPIC CAUSALITY  

Calculating Boolean functions with Karnaugh-maps, 
nobody would think about time relations. We consider, the 
signals ‘are infinitely long’. However, in real world, all 
reasons have a live time; reasons have to occur exactly in 
the right time at the right place relative to the other to 
guarantee any function or 
malfunction of anything.  

Arthur Schopenhauer 
introduced the term ‘causality’ 
[1] in a meaning of sequential 
delay chains: any cause B 
follows on a reason A, or A 
causes B.  

Figure 1.  Crash between an airplane 
and a helicopter. The devices have to 
be at the same time at the same place 
to cause a crash [9] 

Enhancing Schopenhauer’s 
definition [1], engineers use 

the term ‘causality’ for synchronous mechanisms with more 
inputs too; for example: synchronizing clock and data at a 
latch, a crash between helicopter and airplane (Fig.1) or a 
modulation between two time-functions. The airplane-
helicopter crash shows the central idea of interference nets: 
If information has a short wavelength (length of the devices) 
a causal event (crash) is only possible with very precise 
timing. 

For correct work of causal mechanisms, delays and 
synchronization have the main impact. Correct combination 
of information needs a correct timing of all respective inputs 
relative to the other. If signals in a circuit come too early or 
too late, the circuit would not work: If I reach the station too 
late, I will miss the train. To reach the destination, we need 
synchronism between events at the same time and location: 
for example between the ‘train’ and ‘me’.  

Thinking about a precise word for causality in time and 
location it is possible to combine words with Greek 
language portions: together (syn-), time (chronos) and 
location (topos) to  ‘synchrotop’. Then interference nets 
describe synchrotopic circuits. This has not so much to do 
with clocks, rather we will talk about relative flow of 
information. 

III.  DISTANCE MEASURES 

Every physical signal or information needs time to bridge 
spaces. Every physical time function appears delayed at a 
destination, which has a different location. As longer is the 
distance, as longer is the partial signal delay. The 
interference net approach has only on rule: The propagation 
of signals with zero delays between any distances in space is 
not allowed. Every distance and the corresponding delay 
produces an delaying edge between two nodes. 

To analyze time-functions in one or more dimensions, we 
calculate the geometrical shift of the time-function by delay 
for each pixel (voxel) in space.  

Different applications have different measures for 
distance r and delay τ , combined over velocity v: 

a) Nerve nets show inhomogeneous delay structure 
relating to the thickness and length of the wires (axons or 
dendrites). Modeling the fine-structure needs detailed delay 
graphs for each connection, consisting of processing nodes 
and delaying edges. On larger scales, Euclidian space seems 
to be applicable. 

b) Large, digital, integrated circuits (IC) have a 
orthogonal wiring in x- and y-direction, sometimes called 
Manhattan-style [13]. Distance r between any two points in 
orthogonal connected space is for integrated circuits the sum 
of absolute values in x- and y-direction, see for example [4] 
‘Bild 2c’, 
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c) Radar, GPS, Sonar, optics or acoustic applications 
mostly use a linear, Euclidian distance measure. The delay 
τ for each voxel in  space or pixel on area can be computed 
dependent of distance r in the well known form 
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In binary-clocked, routing networks, also the Hamming-
distance can play a rule for distance measures, [13]. 

IV.  UNIT SYSTEM 

We prefer one-dimensional time-functions as vectors 
(matrices of format (1, n) or (n,1)) with a unique time scale, 
which means, with identical sampling rates. We suppose and 
do further not note, that each task starts with an initial 
scaling of time-functions to a physical unit-system. Because 
of the physical background, the use of physical time-
functions is necessary. We use linear, normalized unit 
systems between distance, velocity, time or frequency and 
delay. Application of matrix and vector notations is only 
used at any second level of information processing.  

V. WAVE MEASURES 

Any duration of validity of a signal in relation to the net 
geometry or size has higher importance, as higher are the 
data rates. Thinking about very high data rates on large 
networks, any synchronisation becomes more and more 
difficult. Suggesting a delaying space, the system size, 
velocity, and maximum data rate correspond, using the term 
‘wave-length’, known from electronics.  

The geometrical wave distance Λ for a signal data rate f 
with velocity v corresponding to duration Τ  is 

(3) Λ = vΤ = v/f 

The interval of signal presence – the geometrical wave 
length - is the length λ of a wave, relating to velocity v and 
interval τ of signal validity 

(4) λ = vτ  

Examples: 

Connecting some ATM-signals running with f = 155 
Mbit/s on wires with velocity 1/v = 10 ns/m on coax 
cable, the possible interval of signal validity is of interest. 
For a 1:1 signal/pause ratio we get λ = v/2f = 30 cm. 

Inspecting nerve dendrites with v = 3 m/s and a pulse 
width of 0.1 ms generates geometrical pulse length λ = vτ 
= 3 m/s . 0.1 ms = 0.3 mm. 

VI.  TIME- FUNCTION AND SPACE-FUNCTION 

Using the term ‘time-function’, we talk in interference 
nets about two very different thinks: about time-functions or 
about space functions. Using for example a term f(vt-r), we 
have the possibility, to run r or vt as parameter on the 
horizontal axis.  

Independent of the space measure norm, we prefer 
functions that move in space with constant velocity v. Any 
time-function can have an initial delay (pre- or post-delay) 
of T, which means, it can come into a field pre- or post-
delayed dependent of the signs. In detail, we get for 3-
dimensional spaces following forms. 

a) Time-function visualization: Distance r is a constant,  
f(t,r) = f(t), running parameter is t. The interest concerns on 
a time-function at a location or node. We get oscillographic 
functions dependent of parameter t (time for horizontal axis 
of plots) for a single location (xo,yo,zo). 
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Figure 2.  One-dimensional location functions, see the Scilab-source in 
homepage [4], image ‘Bild 1’. Two parameters, vt and x, create four 
schemes A…D. Cases A and B show waves with tail at the end, C and D 
shows waves with tail in front.  

b) Space-function visualization: time t is constant,  
f(t,r) = f(r) , running parameter is r. The interest is to follow 
the flow of information thru a network. We prefer 
subsequent images (movies) dependent of location 
parameters (x,y,z) or distance measures r, where the time  
parameter vti runs with the image number i.  



(6)  ),,,,(),,( 0vTvtzyxfzyxf i= . 

In the first case, f  has time measure, in the second case, f  
has geometric measure. Index zero concerns a fixed value; 
without any index, the running parameter is concerned. 

VII.  DISCRETIZATION BETWEEN TIME AND SPACE  

Inspecting a time-function flowing over a certain location 
(xo,yo,zo) in space, the measure between steps vt (geometric 
measure) is different to the grid of the space. For accurate 
calculation it is possible to use interpolation functions 
(splines) between incoming time-function values to ensure 
proper discretisation. Without interpolation, wave field 
images can get edges in colour mappings.  

In signal processing it is common use, to define 
operations on discrete time-series. Because of the grid 
differences in space and time, for interference networks it is 
of high importance, to work with classical time function 
properties and with physical measures. 

VIII.  V ISUALIZATION OF SIGNAL PROPAGATION 

In one-dimensional case it is common, to plot subsequent 
space-functions, each with the next time shift vt, compare 
with [4], Scilab-source behind movie ‘Bild 1’. To generate a 
‘still’ movie as figure, it is also common, to draw images 
with parametric values vt, in a style comparable to Fig.2. 

Visualization in higher dimensional space with some 
more waves needs a different approach. It appeared to be the 
best practice, to add all waves in a field for each location 
separately (net node, pixel, voxel). The sum changes the 
colour value relative with the value, Fig.3, a…c. Examples 
with Scilab- source code behind movies or images can be 
found again on the web, see [4]. Visualization of waves at 
time point t and at location (x,y,z) is  
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where j is the time-function number index, wj is the 
incoming time function, vj is the velocity of the time 
function and r j is the distance to the source point of the 
wave j, see Fig.3, a…c. f(x,y,z) is the resulting time function 
to plot at point (x,y,z). 

For any network- operation at any node – that can be 
again a sum, a product, a difference, a quotient, a fuzzy sum 
or something else between incoming time-functions, we 
construct by analogy a term for the operation Ψ of the 
node. Again m is the number of time functions (channels). 
The resulting function g at node (x,y,z) becomes  
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For operations, products or sums have high importance.  

Fig. 3d) shows for example behind waves (a…c) the 
result of a product-Ψ-operation, a product between three 
waves exactly at the time point, the three waves (range 
between 0 and 1) meet. Before and after meeting of waves, 
the product field is zero. Only at the time point, and at the 
location, the waves meet, the product is different from zero. 
However, how is it possible to conserve this short moment 
into an image?  

 

Figure 3.  a) to c): Space-function waves in two dimensions with Euclidian 
distance, d) corresponding. Ψ-operation as multiplicative interference 
integral.  

IX.  INTERFERENCE INTEGRALS 

Nerve neurons act like pulse generators. If any Ψ-
operation produces any value above a limit, the respective 
neuron (node) gives a short pulse.  

In technical applications, the result of a wave collision 
(‘interference’) is to conserve for satisfactory time to 
produce an ‘integral image’. A summation (integration) of 
all values at each node (different from zero) is a first 
solution. Any interference integration can in the simplest 
case be written as moving average filter over g(t) at 
location (x,y,z) 
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If time points on g(t) are infinite dense, or if we have a 
‘analytical’ time function for g(t), we define the 
interference integral Y  over g(t) as  

(10) ∫
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Variables (x,y,z) mark the concerning node, pixel or voxel 
in space. 



Nevertheless, the way to calculate interference integration 
can be different. If we use for example as Ψ-operator a sum, 
(case of the ‘Acoustic Camera’ [5]), the operator- and wave 
fields are identical. Remembering, addition of time 
functions produces a new time function g(t), it is 
convenient, to store the resulting time function g(t) for each 
node. Reasoned by wave addition for operation in case of 
acoustic images, the space-function wave field f is identical 
to the operational wave field g of the node. Here the 
effective value shows for example the noise image Y, 
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A mouse-shift onto any pixel (node) in the resulting field 
plays the time function g(t) of the pixel (they can be 
different) [6]. This way, we can listen into the interference 
integral image to get a better understanding for noises 
behind coloured emissions.  

What we name colloquial with the term ‘image’ (optical 
lens image, acoustic image) appears in theory as 
interference integral of waves, unconcerned, if the nature of 
waves is periodic (optical case) or non-periodic (nerve nets). 

 

Figure 4.  Interference integrals (reconstruction of generator spaces): left) 
30-channel electrocorticogram (ECoG) [19]; right) 30-channel acoustic 
image of a turbo-prop airplane [18].  

X. TYPES OF INTERFERENCE 

If the data rate within a field carrying many signals, 
becomes too high, or if the pulse length becomes too wide, 
or if an average fire rate in a net becomes too high, the 
probability increases, that independent waves of different 
sources reach per coincidence any receiver just at the same 
time. In acoustic imaging, the behaviour is known as 
‘aliasing’, in microscopy we talk about ‘diffraction rings’.  

Central problem is the possibility, that waves of different 
origin or of different index reach at the same time the same 
location. It needs no imagination, that the signal density, the 
quotient between length of the valid signal and length of the 
whole wave has substantial importance. Usage of periodic 
signals (light, sound) produces the most problems to avoid 
aliasing or cross interferences.  

If we suppose, any time-function of a signal can be 
constructed of a sum of separate waves of identical index n, 
shifted by delays τ and T, 

(12) ∑ −−=
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(compare to [4], source code of ‘Bild 2a’), where n is the 
number of waves in the signal, T is any pre-delay and τ 
associates the distance from the source. 

We subdivide into three groups. 

(a) If waves of identical index n meet everywhere in the 
field, we call it ‘self interference’. The term 
associates properties of optical projections and 
images.  

(b) If waves of different index n – but from an identical 
source - meet, we talk about ‘auto interference’, 
associating the auto-correlation of signals. 

(c) If waves of different sources meet, we call it ‘cross-
interference’, associating the cross-correlation of 
signals or the aliasing within images. 

The division is of some importance, because any kind of 
non-periodic and some kind of periodic signal-processing is 
addressed.  

Optical images, produced by lens systems, are projections 
in self-interference. With delay-inversion and resulting  
map-inversion, the image reconstruction of acoustic cameras 
is in self-interference too. 

Auto-interference characterizes the large field of signal 
processing between frequency-filters and linear feedback 
shift registers (LFSR). LFSR symbolize the idea: One signal 
runs in a circle, and is combined with delayed parts of it.  

Last not least cross interferences plays mostly the 
negative rule – we would avoid cross interference in every 
kind of imaging technology. But in nerve nets, in my 
opinion it seems to play the important rule for association, 
however. 

XI.  CONVOLUTION AND INTEGRAL TRANSFORMATION 

Missing a better term, in [3] appeared the term 
interference-convolution (Interferenzfaltung). Teuvo 
Kohonen, a well-known neuro-scientist, did not agree with 
this term for calculation of wave-fields. He asked, “Is this 
really a convolution?” So let us discuss the features of 
interference nets to realize known convolutions 
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The output sequence is y, input sequence is x and the 
impulse-response is h. Using a discrete, finite form, the 
Cauchy product of two sequences 
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a time-series of a ‘wave’ x is running over a barrier h, 
while an addition of all combinations for each n is 
necessary. Subdividing into a possible sequence shows 
series in form 
(15) y(n)      = x(0)h(n) + x(1)h(n-1) +…+ x(n)h(0) 
(16) y(n+1) = x(0)h(n+1)+ x(1)h(n) +…+ x(n)h(1) 
(17) y(n+2) = x(0)h(n+2)+ x(1)h(n+1)+…+ x(n)h(2) 

For each y the x-series is multiplied inverse with the h-
series. If x and h or k and n differ in size, we fill zeros. The 
realization is known as finite impulse response (FIR) filter, 
where x is the input series, h are the coefficients and y is the 
output series.  

Reordering the set of equations by shifting each raw one 
position more to the left gives 
(18) y(n)    = x(0)h(n) + x(1)h(n-1) +…+ x(n)h(0) 
(19) y(n+1) = x(1)h(n) + x(2)h(n-1) +…+ x(n+1)h(0) 
(20) y(n+2) = x(2)h(n) +x(3)h(n-1 )+…+ x(n+2)h(0). 

We find time index movement of x and y in the same 
direction, while the ‘barrier’ coefficients h stand still. The 
direct realization of convolution is a digital ‘finite impulse 
response’ (FIR) filter of infinite length.  

 

Figure 5.  Right: Classical FIR and left: IN drawing of FIR, convolution  
in nerve-like properties. It is not allowed, to give information infinite fast 
from one node to the other. Output y(t) uses a single node. By analogy to 
neural circuits, here the pulse-response h was drawn as weight wn  [3]. 

The disadvantage of classical FIR realisation for IN 
approaches is, that all y(n) need to have the same time slot, 
thus all summations have to be done within one node at a 
single location. To find an IN-realization without zero 
delays one edges the node of y has to fill a single location. 
Arrangements Fig.5 and Fig.6 do not violate the IN-rule of 
finite velocity between nodes, source [3]. 

Some words about Fig.5: While the input series run along 
the circumference, the output is central. Dependent of the 
application, any code, which meets the weights wn at the 
neuron N produces an output different to zero. The delays 
between circle and centre are equal and have only the 
influence; the output comes by that delay later. The pro of 
this IN-like realization is, that it uses no hidden delays. 
Known from design of microcontroller design, hidden 
delays include bottlenecks, if operations (addition, 
multiplication…) have to be done without enough time. 

 

Figure 6.  Second IN-realization of a convolution in nerve-like properties, 
source [3]. The delay chain appears subdivided into a series of separate 
delays. 

Fig.6, source [3], shows a second realization. The idea is 
to split the delay-series within the input into different, 
separate delays, each carrying and delaying the input-
function by a increasing delay 

(21) τ1 = τ 
(22) τ2 = τ + τ 
(23) τ3 = τ + τ + τ 

... ... ... 

(24) τn =  n τ 
The function is identical to classic convolution. The 

network in this form seems to be predestined to generate and 
detect bursts, we find everywhere in nerve system. Bursta 
seem to act like codes, which can be transferred over single 
wires without any interference projection. This seems to be 
important, if code is to send over single, long wires to the 
extremities.  

Although not proven, we find in nerve nets different 
possibilities for such arrangements. The hope is that a 
neuro-scientist anytime can verify such a circuit.  

Coming back to Kohonen’s question: “Is this really a 
convolution?” now we can answer: Yes and no. We find 
convolution cicuits, but the wave mechanism is different. 
And verification in nerve system has to be done.  

Following the way of convolution, we can construct 
interference nets for other integral transformations, 
avoiding edges with zero delays between nodes. 

XII.  DELAY VECTOR, MASK 

Any spatial arrangement between nodes produces delays 
between nodes. If any node has n neighbours, a group of n 
delays τi characterize the delays at the node. Using a column 
vector T, we get 

(25) [ ]nT τττ ..., 21= . 

The mask is e central idea in different fields to 
compensate delays. In case of the Acoustic Camera [6] the 
mask is used to compensate for each pixel (2D-version) or 
voxel (3D-version) the delay to the corresponding 
microphone [6].  



Example: Point S in Fig.7 has two delays to the next 
nodes, the delay vector T of S has two elements,  
T = (SA, SA’).   

XIII.  PROJECTING CIRCUITS 

The main idea of IN concerns the calculation of physical 
projections. Known from optical lens systems, physical 
projections mirror the images or maps between input and 
output.  

Parallel to the 1993 paper of Konishi [11] “Noise location 
of the barn owl”, the title page of [3] (1993 again) showed 
an IN for a nerve-like projecting circuit, Fig.7. Signal delays 
basing on finite velocities supposed, the edges have delays 
proportional to the length of edges. 

The function is as follows. Any receiving node M 
multiplies the incoming time functions. While time-
functions have a value-range between zero and one, 
excitement of M appears only, if signals come ‘synchrotop’. 
If a sender S submits a time-limited signal (pulse) with short 
wave length, the contra-lateral receiver gets the two partial 
waves, going over A respective A’, parallel at the same time. 
Thus, any information flow in this network is only possible 
between contra lateral senders and receivers.  

Figure 7.  Simplest projecting 
network, title page of [3]. The net 
mirrors a vector or map P of the 
input into a vector or map P’ at 
the output. 

Any map P projects a 
mirroring map P’ to the 
other side. Using different 
velocities, sizes and 
wavelengths, it is possible 
to study the circuit 
properties with nerve-like 
parameters, using the IN-
approach. The circuit 
gives a first idea about signal addressing in systems without 
clock.  

In abstract speaking, point M is synchrotop to point S. 
Map P is synchrotop to the mirroring map P’ in case of 
error-free projection. 

• Self-Interference Properties 

Is the sum of delays ∆ (scalar number) between 
synchrotopical points on a single path and together the time-
difference between begin and end of propagation, 
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and is j the number of all interesting paths for a self-
interference projection, the delays of all paths have to be 
equal 

(27) j∆==∆=∆=∆ ...21 .  

Using delay vectors, the well-ordered sum of delay 
vectors between synchrotopical nodes is the delay ∆ (scalar) 
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The raw-vector of ones has the size of column vector T. 
This projection law is valid only for self-interference. 
Additional pre-delays change everything. 

Examples: Circuit Fig.7 dissociates in three delay vectors: 
for the transmitting field (top), the carrier field (middle) and 
the receiving field (bottom); q = 3; vector-size is two. 
Clocked latch: Without malfunction, it is possible to include 
equal delays into wires for clock and data-input. 

• Auto-Interference Properties 

A wave series of a single time-function maps onto a 
single point, if additional delay paths exist, having time-
differences corresponding to frequencies or codes. We will 
call it ‘auto-interference’ projections. Any frequency is 
detectable at a single location by a delay difference ∆ 
between adjacent nodes 

(29) 21/1 ττ −==∆ f . 

Any code is detectable using convolution circuits, see 
Fig.5. Find more in [12].  

• Cross-Interference Properties 

Cross interference appears between different channels and 
different wave indices in different forms. In acoustics, we 
talk about ‘side lobes’, in nerve system about ‘pain’ or 
‘confusion’. Find a simulation of cross-interference 
overflow dependent of average pulse-distance here [17]. 

• Reconstruction and Projection 

Using channel data, we have two possibilities: To 
reconstruct the sources of generator space (any natural data, 
Acoustic Camera, ECoG), or to project into the receiver 
space, validity examination (next). The numeric calculation 
does not generally change, but the delays have opposite 
signs. In case of computer reconstructions we use negative 
delays corresponding to f(x/v + τ).  

XIV.  OVER-CONDITIONED SYSTEMS 

Using many more then two edges A, A’ for the connection 
within self-interfering fields (case of lens systems in optics) 
we get additional space conditions for the sums of distances. 
It is no longer possible to find conditioned solutions in the 
whole space. In optics, we get axial-near sharpness. For the 



case of nerve nets, we need additional inhomogeneities in 
distance measures. For example, using three channels in a 
two dimensional field, three waves produce a single 
interference location. Using four channels, we need a three 
dimensional space. Using n channels, we need a space 
dimension of n-1, to have the chance to propagate all waves 
to a single point. If the space dimension is d, and the 
channel number is n, to avoid over-conditioning in 
homogeneous space we find 
(30) d = n + 1. 

To overcome the restriction, the main idea for the 
Acoustic Camera with 32 channels in 3-dimensional space 
was 1993, to use negative delays for an exact compensation 
of all delays of the acoustic space [6] between each 
microphone and each reconstructable node (pixel/voxel).  

Is following the nerve system limited to 4 channels (3-
dimensional)? Supposing, nerve system uses sometimes 
more then four channels (three dimensions) for a self-
interference projection, for example, we think about n 
channels. How to use n-channels to make clear projections 
in 3-dimensional space? With axial-near sharpness, like 
optics? Thinkable. But nerve net has a second possibility. It 
can increase the space dimension to (d-1). This idea seems 
to be crazy for the first moment. But looking through a 
microscope, we find a network, that is filled with loops and 
meshes over and over. We find a very inhomogeneous 
micro-structure, far away from Euclidian norm.  

XV.  MOVEMENT AND ZOOM 

What happens, if a pre-delay on a wave source point 
delays the incoming wave? The waves from opposite 
directions will meet at a different location, the point of 
interference will shift to the delayed source point, compare 
to animation ‘Bild 3b’, [4]. Therefore, interference integrals 
shift also to this location. We call the effect ‘Movement’, 
compare to [14]. 

In the case, we modify the field velocity, by holding all 
other conditions constant, the points of wave interference - 
the interference integral shifts as well, but in different 
manner. The interference integral image begins to zoom like 
a zoom-camera, compare to [15].  

XVI.  EXAMPLE: WAVES OF SIGNAL INTEGRITY 

To make things transparent, let us analyse a race 
condition in integrated circuit design, comparable to [4], 
movie ‘Bild  2c’. The Scilab source code is behind the 
image.  

Forcing high communication rates in integrated circuit 
design, many signals have a limited duration of validity 
(validity interval). For a correct function of each signal 
conjunction (AND, OR, EXOR, SUM etc.) the signal 

duration of stable inputs has to overlap (cover) the possible 
variance of input delays.  

 

Figure 8.  Supposing finite velocities, in every physical network or circuit 
(electric, ionic, optical, acoustic, sonar) the connection scheme (left) 
produces a dependent timing- or delay- scheme (right) 

We have to deal more and more with signals that come 
too early or too late. In integrated circuit design, larger 
circuits produce more ‘timing problems’. However, the 
circuit designer receives the function (connection scheme) 
and the timing scheme in separate specifications. He has to 
achieve both specifications, unable to know exactly, how.  

To generate a rectangular space-function, we use a Scilab 
‘function definition’. Instead of Gaussian, we can also 
define a rectangular wave function removing the slashes. 

deff('y=welle(u)','if u<0 | u>3 y=0; else y=1; 

end') 

The function returns a single number, if it is called with a 
single number. To produce a wave-function, the time-
function f(t-x/v) moves in geometry-domain in the form 
g(vt-x) 

welle1 = welle(vt - sqrt((x-x1)^2 + (y-y1)^2)). 

Input is the time parameter t, multiplied with the field 
velocity v to a location parameter vt. Output is welle1. The 
function definition of welle comes into process. Inputs x1 
and y1 are the entry-points of the wave. The wave function 
runs within a three-level loop from inside to outside in x, y 
and vt. Finishing slopes x and y, a single image is finished, 
and the value counter for vt increments. 

Calculation of waves and I² uses in this example a pixel-
oriented form. Because we like to have all waves on the 
same field, we add the single parts 

f(ix,iy) = welle1 + welle2 + welle3. 

Matrix f(ix,iy) has the size of the image field. Calculation 
of the operator space uses a multiplication for every single 
pixel 

i(ix,iy) = welle1 * welle2 * welle3. 



To get the interference integral (the image), integration 
uses a summation. Initial value of matrix g is zero 

g = i + g;   h = g .* dx. 

Vector h avoids destruction of g. The program plots a 
series of wave images and as the last image the interference 
integral.  

 

Figure 9.  Orthogonal wiring of an IC produces diagonal validity waves 
a)…c). Three signals with limited validity time (bright) come into the field. 
To find a place for a correct conjunction of all three, the maximum of the 
interference integral d) shows a single location for a correct conjunction 
location, Scilab-source and wave field movie see [4]. 

XVII.  SUMMARY  

A network class, consisting of operational nodes and 
delaying edges, called ‘interference networks’, shows 
‘waves of information’. Introducing space-functions in more 
then one dimension shows the possibility to analyze periodic 
and non-periodic wave fields of signals. The wave field 
calculus uses an addition of the space functions for each 
node. Parallel to the wave field the operations field (Ψ-field) 
gives the possibility to find wave collisions. Integration over 
the operations field produces the so called ‘interference 
integral’, colloquial named as ‘image’. The interference 
integral and its inverse gives the chance to construct images 
from time-functions (acoustic camera) or to produce time 
functions from images. So it predicts the unity of ‘to see’ 
and ‘to hear’ for nerve system. The work shows that 
coupling of theories of wave fields to periodic functions is 
confusing [10]. The background of interference network 
theory shows, how to deal with non-periodic waves too. 
Because it makes no difference between periodic or non-
periodic time functions, it appears as a generalization for 
many wave field approaches.  
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