A VERSATILE NETLIST GENERATOR
FOR FAST DATAPROCESSING SLICES
BASING ON TREE REPRESENTATIONS

Gerd Karl Heinz
SICAN GmbH, Hannover
Germany

1. INTRODUCTION

2. ABOUT TREE STRUCTURES
LINEARIZED TREES
HEIGHT OF TREES

TREE- ROOT POSITION
CUTTING A TREE
BOOLEAN SERIES
MATRIX FILLING

3. DESIGN EXAMPLE

4. HOW THE GENERATOR WORKS
5. TECHNOLOGY MAPPING

6. SUMMARY

Dr. Ing. G. Heinz, SICAN GmbH, Garbsener Landstr. 10, W-3000 Hannover 21, Germany. Tel. +049 (511) 2795 242, Fax. 280

A VERSATILE NETLIST GENERATOR
FOR FAST DATAPROCESSING SLICES
BASING ON TREE REPRESENTATIONS

Gerd Karl Heinz
SICAN GmbH, Hannover
Germany

Introduction

Modem ASIC- CAD Tools - like CADENCE-, VTI- or LSI Logic- software - include
powerful tools for ASIC- schematics and layout generation. So it is possible, to reduce the
problem of module generation for datapath slices to that of netlist generation for variable
types of netlists. The advantage is a rapidly increasing flexibility and versatility for
datapath generation tools. For example VTI shows the efficiency of tools, generating
allround' datapath processing elements with easy algorithms.

Our approach to datapath module generation is based on tree representations of standard
cells working in order log(n) times. Tree representations in this sense means: tree
structures at the algorithmical level and tree representations as a way to solve electrical
fanout limitation problems at internal nodes for parametrisable structures.

Tree solutions are - compared with available ripple algorithms going in order const*n
times (n represents the buswidth) very fast for larger busses (>12 bit). The resulting speed
improvement is significant.

Compared with easy ripple representations, the design of tree representations is extremly
difficult. Costs increase rapidly. To introduce datapath tree solutions into the ASIC-
market, it is necessary, to design the tools independent of wafer fab technologies. So our
tools refer to allround available, hierarchical useable standart cells as basic elements only.
The customer can use the tools like library elements: pick up the library menue, choose a
datapath slice element (like adder, comparator, decoder), complete a fill form for slice
parameters (buswidth, input-/output-/control- activities, maximum internal node fanout,
functional specifications) press return- buttom, and the generated datapath slice symbol
drags at the cursor and can be placed in the schematics.

The resulting area overhead compared with ripple solutions is not substancial. Datapath
circuits in many chips occupy only small amounts of total chip area.

For the custumer the design costs decreases, because the chip designer gets modules, that
work as fast as possible, in shortest periods of time. So the schematic design of a 32 bit
incrementer circuit needs approximately 15 CPU seconds (VAX 11/780) , compared with
some weeks to design the module by hand.

The algorithms are programmed in 'C' using a VMS environment.

Dr. G. Heinz, SICAN GmbH, Garbsener Landstr. 10, W- 3000 Hannover 21, Germany. Tel. +049 (511) 2795 242, Fax. 280

Increasing the speed of datapath elements for ASIC's demands
1) fast (O log n) algorithms (default)
2) small layout area (default)
3) mapping to different technologies (scaling ability)

4) small delays of each internal node (fanout optimum)

How to solve this problems?

Problem 1)
Usage of area and time optimal algorithms only.

Problem 2)
Routing areas cost a lot of space. The bus order is kept
unchanged.

Problem 3)

Layout dependencies has to be avoided. Problems of
algorithmic generation and (automated) schematic/ layout
generation are strictly decoupled.

Problem 4)

Optimized fanouts at all internal and external nodes are
generated from the algorithm.

A node (input, output, clock, enable...) is changed into a
binary or higher order tree representation, if fanout increases.

VIEW AT SOME DETAILS...

1. INTRODUCTION

TASK
- Generation of fast and parallel computing circuits for ASICs
- fast without ripple carry propagation
node fanouts not allowed to increase
-parallel unlimited buswidths theoretical possible
- Speed up the design time
- Support for high- level synthesis (?!)

PROBLEMS to solve

global : unrestricted, variable buswidth

electrical : delay- minimum = fanout- optimum of all nodes
algorithmic : choice of fast algorithms

-> medium found: tree structures

MODULES

- Add_Sub Incr, Decr, CLA, Carry Save Adder*

- Coder Decoder, Encoder, Multiplexer

- Flags Parity, Zero, Equal, Compare

- Mult_Div* Carry_save_tree, Booth_Encoding, div_1/x

- Register Addressed, Associative®, FIFO, Stack

- Shifter Left, Right, Left&Right: arithm./logical, Barrel

VOLUME OF GENERATION
- hierarchical netlist

- relative placement

- module- datasheet

- module- help

- behavioral model*

TYPES OF MODULE GENERATORS (digital)

VARIABLE WIDTH
ROM
EPROM
RAM
PLA (PLD, SLA, D- Matrix)
SLA
Adder
Multiplier (integer)
Barrel Shifter
FIFO & Stack
Counter
LFSR
Parity Generation
ALU
MMU
Filter

LIBRARY BASED
Boolean Gates
Sliced Datapath (vertical/ horizontal)
2901, 8051 CPU
2901, 8051 ALU
Microcontroller
Control Unit
Bus Interface

PRODUCTS (assortment weighted?)
1. Concorde (Seattle Silicon Techn.)
2. Genesil (Silicon Compiler Systems)
3. Chipsmith (Lattice Logic)
4. Ltimate (Silicon Design Labs.)
5. Modular Design Environment (LSI Logic)
6. % (NCR Microelectronics)
7. VLSI Silicon Comp. Syst. (VLSI Technology)

Source: E.L.Meyer, On Module Generation, VLSI Systems Design, March 1987

PROGRAM STRUCTURE

PROGRAM MANAGER

!

GENERATOR 1| GENERATOR2|GENERATOR3|GENERATOR...

l

NETLIST CONVERTER

|

* TRA

{

ROUTING PREPROCESSOR

|

*CSHB

l

ROUTER

GATE LIBRARY

|

*.CMD

|

BINARY CONVERTER

