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Abstract. Observing time domain properties of a network (delays, lo-
cations, time functions at locations, velocities) the main behavior of a
net can be observed. We will call such networks "Interference Networks"
(IN). By contrast to Neural Nets (NN) all signals on wires of IN have
distributed (inherent) delays. (The term ”interference” means an univer-
sal superimposition or interaction of (mostly non-periodic, spiking and
delayed) time functions f(t− T )).
The paper addresses questions of a better understanding of pictures of
thought, sound maps or movement maps [4–15] in nerve systems in the
same way, as it addresses technical applications (Acoustics, Radar, Sonar,
lens systems, feedback controls, GPS). It gives an overview about the
high potential of signal interference in nerves and in circuit theory. An-
alyzing the spherical flow of time functions, we find them to be waves.
IN create an abstract wave theory without materialistic background. This
background gives a huge possibility to synchronize knowledge of different
scientific fields. It has potential to combine parts of wave optics, neural
nets, acoustics, filter theory, control theory, electron-physics and neuro-
science under one abstract, physical roof. The IN-approach creates a high
potential for education of students if introduced as basic lecture.

"The question, how the nervous system creates representations of its
environment has fascinated philosophers and scientists since mankind
began to reflect on its own nature." Wolf Singer, 1993

1 History of Interference Networks (IN)

End of the 80th mankind had knowledge about a lot of artificial "neuronal" nets,
lots of works were done about learning nets, oscillatory nets or spatio-temporal
maps, about holography or coherence, for example see [1, 2, 16–22]. The output
map of such networks represented in nerve like parametrisation the input map
- if. By coincidence in September 1992 I found a little problem: If we suppose
geometrically small impulses that flow very slow through such nets, it is not
possible to get non-mirrored output presentations (interference integrals) that
correspond to input maps. Like optical lens systems such nets can only produce
mirrored projections. 1993 I spent a half year to find any mirrored map in neuro-
computing literature, but I could not found anything.

heinz
Source: Heinz, G.: Time Function Waves, Interference Integrals and Abstract Field Theory. Paper rejected from Second International Work-Conference on the Interplay between Natural and Artificial Computation (Iwinac 2007), Murcia (Spain), June 18-21, 2007



By the way: the inspiration was reasoned by thinking about a simple multi-
channel Radar-system for cars. I found, that continuously running time in such
systems can only produce mirrored maps with additional hints like axial-near
sharpness known from optics. To get high-quality images, we need time reversal
algorithms1.

Fig. 1. Classification of interference networks

Limited velocity of nerve impulses supposed (µm/s ... m/s) [11, 13, 15] any
millisecond impulse becomes a geometrical wave length in the range between
nanometer and millimeter (v = ds/dt): The geometrical length of a pulse can be
very short in comparison to the size of a neuron.

Interference nets can be seen like cross-roads: the probability that cars (pulses)
coming from different directions (dendrites) crashes on the crossing is as higher,
as smaller the distances between the cars or as longer the cars or as slower (!)
they are (ds = v dt). Static signals (EPSP...) at logic circuits (soma) are com-
parable to infinite long trains crashing statically at the crossing. In nerves with
pulse/pause ratios of 1:10 to 1:10.000 the "crash probability" for excitement is
very small. What to do? First we find, that static signal processing (pattern nets)
is inadequate for data processing. Second, we have to look for ”crash” places! We
have to follow a single impulse or signal over the whole network, hoping it meets
1 The paper has nothing to do with electric or magnetic or acoustic fields: we examine

waves and wave field integrals in time domain only, without of any materialistic
background.



his double(s) at certain places - we have to look for (discrete) interference loca-
tions of signals, for discrete pulse wave interferences.

Introducing the approach we find, that nerve networks (in opposite to neural
nets) map the input pattern only mirrored to the output! In September 1992 this
idea was like a shock: It was not possible to find any scientific publication about a
mirroring property in neuro-computing literature. The problem becomes as big-
ger, as more such wave analogies lead to optical projections. Like a interference
circuit in nerve dimensions a simple, optical lens system mirrors the image. The
next shock was, that I could not find much about elementary wave conditions
for optical projections, looking for abstract wave-conditions.

So the idea was born to investigate the field of "discrete wave interference on
distributed, wired nets". Can a physical approach to neural nets (later called "in-
terference nets") create a connection between wave physics (optical, acoustical)
and neuro-computing?

2 Character of Interference Networks (IN)

By contrast to "neural" networks (NN) the wires of IN need distributed delays.
Wires carry velocities, delays and spatial information. The time functions flow
on the wires with constant or variable speed, with or without attenuation. IN
demand simulations in time domain. Choice of a rough time or space grid or
improper use of time function parameters destroy the wave properties of an
interesting IN immediately. Spatial arrangements of bundles of wires, studied
in [15], showed the influence of geometrical changes to wave fronts on the bundle:
"space codes behavior". It is necessary to define the space arrangement of each
wire. In meaning of interference we use the term "discrete wave" instead of
"signal" to manifest this property. We find following properties of IN:

– Physical nets, continuous in space and in time
– Distributed delays on all wires (wires are not electrical nodes)
– No information flow without delay (!)
– Wires carry time functions f(t− T )
– Spatial wire definition is necessary f(x, y, z)
– Classical neuron definitions are possible (integrate & fire etc.)
– Generated pulses are carried on different wires and meet again

Thinking this way, we find time functions to be (abstract) waves. Interference
nets create an abstract and non-materialistic wave theory on inhomogeneous
nets2.

2 Remark about wave calculus: We demonstrate only simple systems. Complex multi-
meshed systems develop for example partial, ”eating” waves, compare [4], Fig.7. They
show much complex behavior.



3 Non-Orthogonal Vector/Matrix Notation

We consider a time function f(t − τ) in digital notation as vector of samples
fj ; F = f(t − τ) = [f1, f2, ...fn]. Addition of time function vectors is analog
to matrix conventions, F1 + F2 but multiplication of time functions is defined
non-orthogonal sample by sample, see [15].

F1 ∗ F2 = [f11, f12, ...f1n] ∗ [f21, f22, ...f2n] (1)

= [f11f21, f12f22, ...f1nf2n] (2)

Remark 1. Note, that classic convolution (with a core f(t) ∗ g(τ − t)) is a source
of confusion in interference networks. A convolution has nothing to do with wave
interference. It is necessary, if you bring a wave in interference with a standing
wave function, for example to give a soma a specific filter task if the wave runs
about this place.

A further source of confusion concerns the use of Fourier-Transformation or
other integral transformations for wave theories of every kind. The 0...360◦ lim-
itation of complex number theory brings confusion into (pulse-like) interference
systems. We lose a lot of information doing calculations in frequency domain,
if we use distances that are larger the smallest wavelength in the system (usual
case).

4 Time Function as Wave

Calculating each pixel of a n-dimensional field, we suppose (if not otherwise
noted) a delay proportional to distance between any source point and the ac-
tual pixel. We suppose a limited velocity for all signals. This simplest method
generates moving waves, if we observe subsequent time steps in a movie.

Example 1. The source point of f(t) has the coordinates P (x0, y0, z0). At a pixel
P1(x1, y1, z1) the function may appear delayed by τ1, the time function is there
fP1(t) = f(t−τ1). At a different pixel P2(x2, y2, z2) it appears delayed by τ2with
time function fP2(t) = f(t− τ2) and so on.

If time functions of different source locations move over such a field, they inter-
fere at some points. Integration over long times, this points of interference are
highlighted (-> interference integral), [15].

Basically this technology was used since 1993 to construct the Acoustic Cam-
era, nominated for different awards, beyond a nomination for the German Future
Award 2005.

Remark 2. Note, that time function waves have no physical background. We
need no materialistic substrate. We only need to know the named proportions:
time functions, velocities, locations. This point of view seems to generate a new,
abstract field theory, suitable for nerve nets or technical things, if we can get
only time domain measures of any subject.



5 Foundation: Self- and Cross Interference

If events (pulses) occurred by the same origin meet again, we have to observe
two, very different cases. The case if a single impulse i meet again his deviates
i (sorry for the abstract terms), we call self-interference (Selbstinterferenz, case
a). If we use a sequence of source pulses (a pulse series i, i + 1, i + 2 ...), addi-
tional we have to investigate the correspondence of predecessors and followers.
We call the interference of impulses with a different origin cross-interference
(Fremdinterferenz, Fig.2, cases b).

While high channel numbers in delay-adjusted systems reproduce the self-
interferences (images), low channel numbers underline the cross interference lo-
cations (frequency maps), [12].

Fig. 2. Self-interference a) and cross-interference between pulses b)

Investigating such wave networks we find capabilities for informational tasks,
like temporal to temporal coding (bursts), spatial to spatial coding (projections),
temporal to spatial coding (frequency maps) or spatial to temporal coding (cre-
ation of behavior), [15].

6 Interference Integrals

If we integrate for a long time over a multi-channel wave field, points of wave
interference become highlighted. We call the result in optics a photograph, in
common speaking an interference integral or in acoustics an acoustic image. Also
a frequency map is a interference integral, small channel numbers enhance here
the cross interference parts.

Supposed, any neuron receives signals (waves) from n different sources, Fig.3.
The (projective) sum of interferences g(t) of n delaying time functions fk is at
time t and location P (x0, y0, z0)

g(t) =
1
n

n∑
k=1

fk(t− τk), k = 1...n, (3)



with delay vector (mask)

M = (τ1, τ1, ..., τn). (4)

The interference integral of n by tk delayed time functions in a time interval
T is a value. By analogy to electrical systems for example the effective value is

yeff =

√√√√√√ lim
T→∝

1
T

T/2∫
−T/2

[ 1
n

n∑
k=1

fk(t− τk)]2dt. (5)

Fig. 3. Time function g(t) of point P summing four sources fk(t)

The equation produces a delay vector M [12]. If pre-delayed by a different
M ′ 6= M g(t) get more and more noise, as more M ′ differs from M . Maxi-
mum interference occurs in P if functions fk(t) appear pre-delayed with the
negative vector −M of P (velocity can be slow in neural space).

Opposite case: If a neuron produces an excitement at any location P it burns
its delay vector M as address into the resulting time functions (Fig.3). Any
spherical shift of P is followed by a different delay vector. That means, the
delay vector represents the location of P. Looking back into the time functions
of Fig.3, we find M looks like a mask. So the interference reconstruction can
be realised using a so called mask algorithm [3]. To get any interference time
function g(t) we have to shift the delay mask M of g(t) over the channels fk(t),
adding vertically sample by sample over the holes. Using f(t + τ) for all pixels
this is the main idea for the calculation of acoustic images and films. Doing this,
we get a non-mirrored reconstruction of the scene, without of sharpness and
over-conditioning problems.



Fig. 4. Expansion of waves in 3D-space. A different P produces a different M

6.1 Projection Equation

Independent, if we consider optics or acoustics or neural nets we find a well
known but not named law: locations of interference (the maximized interference
integral) are there, where all partial waves from the excitement point come into
coherence again. This point of self interference has the additional condition,
that delay sums on all paths are equal. The sum of delay vector elements of
the generating field MG, the delay vector of the transmitting lines MT and the
delay vector of the detecting field MD have to be equal. [1] symbolizes the unit
vector [12].

MG + MT + MD = τ [1] (6)

(self interference condition)
By analogy we construct different cross interference conditions, see [15].

6.2 Projection and Reconstruction

For technical purposes we differ between projection (optics, beam forming) and
(computational, non-causal) reconstruction. Using f(t + τ) we get the so called
reconstruction (Acoustic Camera), using f(t−τ) we get the projection. While the
reconstruction delivers a 1:1 image, the projection produces mirrored interference
integral images [12] with axial sharpness problems know from optics, see Fig.5b).
In case of perfect reconstruction the τ in last equation will be zero.

6.3 Conditioning

If pulses of the same origin meet n-times again, the question of conditioning
appears. Using a d-dimensional sphere, we need d + 1 channels (waves) to mark
precise the self interference location, n = d+1. Using more channels we get over-
conditioned projections (for example optical lens projections). With a smaller



channel number the projection is under-conditioned, it moves. For example we
get hyperbolic excitement curves for the case of two channels on a two dimen-
sional surface [10] (n = d : under-conditioned). For real space the dimension is
limited to d = 3. Nerve system can increase the dimension (and following the
channel number) only using inhomogeneous spaces by velocity-variation (ax-
onal/dendritic diameter changes) and spatial convolution (cortex) [?, 4–15].

6.4 Address Volume

Nerve velocities and pulse length can be very small compared to the dendritic and
axonal size of a neuron [11,13,15]. Any geometrical pulse width λ determines the
sharpness maximum of a pulse projection on a core (soma), it is defined by the
pulse peak time tpeak and velocity v; λ = tpeakv. If a neuron must be addressable
independent of neighbors, the average distance between neurons is limited to λ.

Example 2. With 10 µm wave length, velocity 10 mm/s, pulse width 1 ms we
can address a maximum grid of 10x10x10 µm3 per liter, these are 1012 neu-
rons. Interesting: as slower the velocity (as slower the animal), as smaller is the
geometric pulse width and as higher is the capacity, however.

7 Temporal to Temporal Coding - Bursts

By analogy to FIR- and IIR-digital filters Fig.5 shows a neuron-like interfer-
ence circuit, that produces time functions (bursts) b) or that works like a time-
function (burst) detector c). All wires might have distributed delays [10]. Using
a b-type neuron as generator and a c-type neuron with the negative delay vector
−M as detector, such neuron pairs can communicate independent via special
bursts on a single line. I called the principle data-addressing. If a neural pair has
mask-pairs, that are not inverse, the neurons will not communicate.

Fig. 5. Basic functions of a neuron or a neural group a) Circuit structure, b) Burst
generation with low bias, c) Burst detection with high bias



We can find this effect in case of two neurons with the same spatial structure.
If they have identical delay vectors, they avoid uncontrolled feedback between
them. So connected, nearest neurons with identical structure can not commu-
nicate! We call this dynamical neighborhood inhibition. In case, the wavelength
is much higher the size of a neuron, or pulses come overlapped in interference,
a neuron has the ability to generate floating values, necessary for bias control
or for velocity controls via glia-potential [12]. Burst generation, burst detection,
data-addressing, neighborhood inhibition and control level generation we will
find as dynamical, elementary functions of neurones [8, 10].

8 Spatial to Spatial Coding - Self Interference Projections

A certain excitement (G) in Fig.6 produces a highest interference integral at the
interference location (E). This is the place, where all partial waves meet again
in self-interference, the delays are equal on all pathways τ1 = τ2 = τ3. To find
locations of interference numerically, the region of interest can be considered as
very dense mashed - like a continuous, free wave surface, b). Each co-ordinate
in the generator field maps mirroring on a certain co-ordinate in the receiving
field.

Fig. 6. Spatial self interference a) projection principle, b) example (over-conditioned
reconstruction top and projection bottom)

In [12] some projection-variants were published. Changing the velocity between
generator and detector field the projection size zooms, the projected image be-
comes greater or smaller. Changing the delay on any pathway (channel) between
generator and detector the projected image moves to a different place, well con-
ditioned projections with n = d + 1 supposed (for example n = 3 channels for
d = 2 surfaces) [12].



8.1 Composition and Decomposition

A special sort of projections, called scene composition or decomposition, changes
the dimension of an interference projection. For example a 3D-scene (chan-
nel number n = 4) P1234 can correspond to different synchronized 1D-scenes
(n = 2) P12, P23, P34, P41 or to corresponding 2-dimensional scenes (n = 3)
P123, P234, P341, P412 and so on. Because of cross-interference noise reasoned
by small pulse distances, this is a way to compose projections into high dimen-
sions, see [7,12,15]. It allows any interference net (nerve system) a much higher
data throughput without reaching the cross-interference limitations of Fig.9.

9 Temporal to Spatial Coding - Cross interference as
frequency map

If a ”split wave” (time function) with the same origin meets again, we obtain a
cross interference map, see Fig.7. The geometrical distances of the cross interfer-
ence maxima appear as function of the geometrical arrangement and as function
of the time function parameters (pulse frequency or the pause between pulses -
refractory period).

Fig. 7. Frequency map as spatial code of a frequency. a) Two channel circuit example;
b) result for two channels and c) three channels. Simulation: PSI-Tools, gh 1996

Function: While a self interference of wave i with wave i (written: [i, i]) pro-
duces the centered emission only (-> projection), any cross-interference of events
(pulses) i with i-1, i+1, i-2, i+2 ... produces a map with emission distances pro-
portional to pulse pause (refractory) distance, a frequency map.

10 Spatial to Temporal Coding

Any nerve fiber delay is proportional to length. A code generator in form of
Fig.5b produces an output code (time function), that is carried by the intrin-
sic delays of the structure. So each spherical arrangement produces a certain



arrangement of time-functions - space codes behavior or structure defines the
function [15].

Fig. 8. Trajectory examination. If an event (for example a pulse) runs along the tra-
jectory, a specific set of delays will detect it

11 Mixed Coding Forms

11.1 Trajectory Examination of a Moving Source

Looking on interference locations, we get a natural way to detect trajectories of
moving sources. Supposed we have some in succession firing cells creating a tra-
jectory in form of a moving figure. Neurons on the trajectory (Fig.8) fire consec-
utively. Interference maximum occurs in P with delay vector M = (τ1, τ2, ..., τn)
for τn = τn−1 − τ , with τ = ds/v, if ds is a distance and v is the velocity
of movement [7, 15]. If a local field potential (glia) controls the velocity or the
delays τn, different velocities can be observed by variation of field potential.

11.2 Fire Density, Holographic Projection and Pain

Lashley [20] analyzed the location of memorization with trained rats. Indepen-
dent, which part of the brain he removed, the rats could remember partially a
learned behavior, a way through a labyrinth. Remembering, that each impulse
is followed practically all the time by a further impulse, self-interference emis-
sions in form of a G are surrounded always by cross-interference figures, Fig.9a.
What a surprise, they look similar? The delay between pulses defines the cross-
interference distance, the distance between the ”G” figures. Any memorization is



Fig. 9. Mirroring three channel projection of a "G". a) Cross interference residua
around a self interference figure; b), c), d) cross interference overflow produced by
increasing fire rates

closely coupled to, what Bohm and Pribram [2, 16, 22] called, holographic con-
tent, holographic measure etc.. So Lashley had theoretically no chance to find
clear locations of memorized contents - what a genius concept of nature!

But what would happen if we reduce the pause between pulses? The cross
interferences comes nearer and nearer, Fig.9b...d [10]. At a certain point the cross
interferences overlay the self-interference locations: the projection disappears. If
we remember, that the fire rate of sensory neurons increase dramatically in case
of injury, we can imagine a possible mechanism of pain.

11.3 Topomorphic Overlayed Projections

In our imagination it is possible, to overlay images or impressions. Can we find
any theoretical evidence for such behavior? To test this, we overlay two channel
data streams. The generating fields ’g’ and ’h’ have identical channel numbers.
They project into the same fields, Fig.10, [12] by overlaying (add, append) the
channel data streams. Both generator images combine in the receiving fields.
If channel source points are moved within the detector fields, the projections
become distorted. But the projections maintain in topomorphic relation. It is
not possible to separate them again.

12 Technical Applications

To demonstrate capabilities of IN I tried to develop a technology to produce
acoustic images and films, using a back-propagating algorithm basing on inverse
waves with non-causal delays f(t+T) [3], [9]. The acoustic camera technology
become worldwide successful and accepted, it is used in most car development
centers in the world (www.acoustic-camera.com). The camera was nominated
for different awards, in 2005 we were nominated for the German Future Award.
Lots of journalists reported about the technology, see www.gfai.de/~heinz/
publications/presse.



Fig. 10. Topomorphic relations between time functions of two sources ’g’ and ’h’,
interfering on different fields

Fig. 11. FIR-filter as a simple, specific interference network



Thinking about interference networks, we find the global positioning system
(GPS), digital filters, or control loops can be seen as such circuits. More: Any
synchronized system acts as a simplest IN, for example a data latch of a computer
or the mixer in a radio receiver. A digital filter (Fig.11) for example can be seen
as a discrete, very simple interference network variant of Fig.5.

For all IN-systems the function depends on the arrival time of external events
(inputs). For example: An elevator moves to different floors, if persons on the
floors push the buttons at different times. This might be surprising, it means
that interference networks bring abstract wave fields into analog and digital cir-
cuit theory at one side, and allow simulations of complexest connected and de-
layed circuits (nerve nets) on the other. Compare with www.gfai.de/~heinz/
publications and find introductions at www.gfai.de/~heinz/historic.
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