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Abstract   Interference networks (IN) and interference systems have a comparable 

mathematical-physical background, reaching from photonic wave interference in 

optics over signal interference in digital filters (FIR, IIR), wave interference in 

Radar- or Sonar- devices to ionic pulse interference in nerve nets. Special 

properties of IN are short wavelength, relative timing and non-locality of function. 

Behind concepts of cybernetics and informatics, we find in interference integrals a 

hidden functional principle for nerve nets, the non-locality of function. The paper 

highlights integration methods in non-recursive IN. It reflects on simulation 

movies on the web [9]. 

Any process, that uses as input a set of time functions 

(acoustic, ionic, electric or photonic) and delivers as 

output ‘images’ or ‘maps’ denotes an interference 

process. The paper observes interference networks 

without feedback between nodes (non-recursive IN); 

the edges carry mono-directional time-functions.  

The idea of modeling such processes bases on the 

conjunction (addition/multiplication) of spatial delayed, 

synchrotopic time functions at 

 

Fig. 1: Non- recursive interference network (IN). Any time function f(t) arrives a next node 

delayed by τ and damped by d in a form d* f(t-τ). 
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locations or nodes, and the integration of interference values. Synchrotopy 

combines in Greek the words syn- for together, chronos for time and topos for 

location [7].  

In difference to solutions of differential equations at single nodes (wave 

equation) the interest of IN is to understand the function of networks.  

In interference systems, the type of operation, the type and parameters of time-

function, the type of non-linear exponation or integration and the current channel 

number ‘interfere’.   

Various works showed properties of interference integrals (‘wave images’): In 

acoustic imaging [4], for nerve nets [8], for high-speed microcontrollers [7]. 

Simplicity of the element-by-element integration process on the one hand; and 

complexity to find possible parameterizations on the other constrained earlier 

publication.  

We suggest a simplest model. It is a non-recursive conjunction without 

feedback; delays shift time- and space-functions without feedback.  

Reflecting McCulloch/Pitts paper [12] “A logic calculus immanent in nervous 

activity” interference systems or networks have to contain more then a logic 

calculus; physical aspects (delaying wave space) and additional mathematical 

aspects (integration – this paper) play an important rule too.  

Analyzing interference nets, we find different philosophical aspects compared 

to computer science and neuroscience. While state machines (Boolean nets, also 

McCulloch/Pitts) use concepts, that associates a ‘function’ or ‘signal’ physically 

to an output of a cell or gate, wave spaces and interference nets show a different 

functional organization and mapping. Thinking about Radar maps or acoustic 

images, the relativity of timing of signals defines the function at a certain place; a 

function does not necessarily associate with the output of a gate or cell. Function 

has no locality. Any gate or cell output can carry very different signals in 

sequence. Non-local functionality needs something like a dense gate-ground (the 

retina for example). This seems to be the main aspects to clarify retarding 

progress: Every philosophic assumption about nerve nets up to now assumes a 

computer-like binding of function to an axonal output like “PORTB3 - LED 

on/off”. 

“A profound revolution lurks in our basic concept of how the information-bearing 

elements of the nervous system communicate.” T.H. Bullock, [1] 

Inspecting a homogeneous photonic wave field on a photo plate, we can shift 

the plate before exposure – the resulting (wave-) image after exposure is 

independent of the shift and of the exact location of the net parts.  

If we change the position or location of some pins of a bus in our PC, the 

system would not work further. For the airplane-helicopter crash [7], the absolute 

place of the crash plays no rule. If machines start and fly with identical relative 

timing, motion, wind, height and direction, they could meet again.  

In IN the type of conjunction (multiplicative or additive), the time function type 

(positive or symmetrical), the way to calculate the detection (integration or 
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averaging), the time function properties (single pulses or sinoidal forms) and the 

channel numbers influence the properties of integrals (maps, images) [7]. 

For example, multiplication of symmetrical time functions works best for two, 

but not for more channels. Additive conjunction is just satisfying for many 

channels but works not satisfying for two.   

Zero Delay Prohibited 

Any incoming time-function f(t) leaves the edge delayed by τ and damped by a 

factor d (mostly d=1)  

 )()( τ−∗→ tfdtf  (1) 

If not otherwise noted, the edge delays the transmitted signal. Each node 

remarks a location with a spatial position or location within the network, defining 

the delay properties of the net. Information needs time to bridge spaces. Infinite 

fast transmission (without a physical delay) is impossible. In opposite to electric 

schematic drawings, where edges mark equipotential connections (electric nodes), 

interference nets have only edges with (distributed or fixed) delays. Comparable to 

electrics, the equipotential assumption of nodes is valid only within a node. Every 

edge has a delay. By analogy, non-local calculations are impossible. For example, 

the convolution integral needs delayed inputs. The IN-representation splits into 

different nodes and external delays. 

Space- and Time Function, Wave Function 

Public wave function definition (Wikipedia) is different to the model proposed 

here. Things are much simpler. We suggest only a dense meshed network and any 

time function that can freely expand into all directions.  

Time function and space function show different views of the same thing: 

• A time function g(t-τ) is valid for a single point (oscillogram). 

• A space function ψ = f(vt-r) is valid for a single time step (ocean wave). 

Space and time function join by analogy with velocity v = r/τ, delay τ, radius r.  

If a time function is leaving one-dimensional space, it becomes a wave. Main 

characteristic of a wave is that all points of a certain peak have the same delay to 

the source location.  

Only the calculation of radius r in space function ψ = f(vt-r) has to change to 

show one- or higher dimensional waves. In r = x-x0 the index x0 denotes the 

locations of the source point of wave, while x denotes the actual location. For 

Euclidian space for example the radius r is the well known Euclidian distance  
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one dimensional space 0xxr −=  (2) 

two dimensional space 
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If we follow a single peak of the time function through any space, we find it as 

a wave [8]. Consequently, a wave characterizes nothing more and nothing less, 

then a space-function in spherical dimension higher one.  

 

Fig. 2: Example of a 2-dim. Euclidian wave function Ψ = f(r,t) = f(vt-r). With v = r/τ it relates 

to time function waves of type g(t-τ).  

If we inspect any system with the property to delay signals flowing through, we 

can regard the signals to be wave-like. The form of expansion of waves depends 

on the spherical measure or norm [7]. Euclidian space geometry produces round 

waves. Manhattan geometry shows squared waves. Inhomogeneous space 

geometry of nerve nets shows broken, distorted or discontinuous waves [10].  

Independent of the measure, all nodes (pixel etc.) under the wave ψ = f(vt-r) 

have a common property: they have the same delay distance (delay) to the source 

point of the wave f(t).  

To finish the wave concept, any single node can overlay different waves 

coming from different origins [4]. We find this kind of wave propagation in 

various types of substrates for different carriers of waves; we find it in air or water 

(electric-, photonic-, acoustic waves), on integrated circuits (electric waves) or in 

nerve nets (ionic waves). By contrast, Andrew Packard’s squid experiments on 

nerve nets [13] had shown that nerve systems do not mesh all nodes necessarily to 

all sources. Inspecting his records it seems, we find yellow and red waves 

interacting independent of black waves. We talk here about different layers. 
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Suggesting a dense meshed network with intrinsic delays between nodes, if we 

run the parameter vt, the waves come in motion. Running it forward, the wave 

runs forward with wave peak in front and wave tail back. If we run the time 

parameter backward, the wave runs backward showing the source point. Using a 

negative delaying substrate [4], we get waves going inward with tail outside.  

Compare with examples and movies on the web page [9]. Under the movies 

lays the Scilab [14] source code. 

Race Circuits 

If the geometric wave length λ = vT comes in the range of the size of a circuit or 

arrangement, we talk about ‘race circuits’. Interference nets are race circuits.  

Functions of race circuits need any kind of integration processes. If we use a 

paper sheet instead of the photo plate, after exposure no image remains. The photo 

image needs integration over lots of waves to form the interference integral – the 

image – within the light sensing material of the photo plate.  

In case of electronic race circuits, race conditions occur in the range of 

femtoseconds for each state. Radar, electric interferometers, reflectometers or 

femtosecond-meters use the idea in several ways. Each pixel of any optical image 

shows properties of interference integration. Fast integrated circuits show more 

and more the problem of race conditions, because each single wire delays the 

carried signal relative to the length. Last not least acoustic camera or Sonar uses 

the interference of sound waves. 

Delays and Waves 

The main important property of interference systems is the restriction that every 

signal needs time to reach a destination at a different location [5].  

For the exposure of a photo plate, a small deformation of the delaying wave 

space by a minimal mismatch of orthogonal direction to the axis destroys the 

image. 

The delay assumption transforms a simple time function into a wave function 

[7]. The interference network becomes a wave space. We talk about homogeneous 

or inhomogeneous wave spaces.  

While nerves need inhomogeneous wave spaces, acoustic, optic or electric net 

models use mostly a homogeneous, Euclidian geometry. Dependent of application 

we find different distance measures for delay, for example Euclidian, Manhattan 

or chaotic (nerves) [7]. 
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Node Structure of Non-Recursive Nets 

Independent of network type the signal processing subdivides into the processes of 

input weighting, conjunction and transfer. 

 

Fig. 3: Net node structure 

Separation of interference network nodes into the three parts weighting, 

conjunction and integration allows descriptions of different processes and types of 

nets: ionic, electric, photonic or acoustic nets. Modeling the dendrite tree of a 

nerve, the edge between weighting and conjunction can also have a delay. The 

conjunction- operator Ψ symbolizes a substitute for possible conjunctions of time 

functions in interfering systems of different kind like Ψ = {Π, Σ, Λ (AND), V 

(OR), max, min, exp}. A general model of node function [6, 7], that fits some 

cases, is 

 ))((),,,(

1

kjjkj

n

j

k txwtzyxy τϕ −= Ψ
=

 (5) 

Transfer functions can be fuzzy sets, threshold functions or integral functions.  

Interaction of Time Function and Processing 

It might be trivial to underline, that the type of time function (bipolar-symmetric 

or monopolar-asymmetric/positive) has influence on possible calculations.  

Multiplication of bipolar signals on more then two channels is impossible. 

Using many channels and multiplication, any negative part swaps the interference 

integral. Hence, computation of many unipolar signals is restricted to addition 

(acoustic cameras) or to multiplication of monopolar signals (nerve system).  

By opposite, addition produces integral values also, if only a single time 

function has a value and all other deliver zero. For acoustic imaging this means 

that every still location in a resulting map gets a residual interference integral 

value.  
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Using two channels, multiplication has interesting properties. It is in common 

use for signal processing (modulation, frequency doubling etc.) and for any kind 

of computer algebra (logical AND).  

Last not least we know from Fuzzy Sets, the kind of conjunction (addition – 

multiplication) influences the probability, that any stochastic computation shows 

the maximum (addition, OR) or the minimum (multiplication, AND).  

Interference Detection: Integral or Average? 

Signal processing and electronics use a wider terminology for ‘integration’ 

compared to integrals in mathematics. In electronics, we call any accumulation of 

values an integration process. To register and count very fast and small spikes, it is 

possible to observe integrals. Using integrative solutions we differ between two 

general types of interference detection, that is 

• Interference integration and 

• Interferential averaging. 

While acoustic cameras use an averaging process to reconstruct maps with dB-

values, any photo film or plate shows an integral behavior. As longer is the 

exposure time, as brighter becomes the film.  

Anti-Parallel Addition of Waves - d’Alembert Waves 

A first public solution of the wave equation shows d’Alembert’s formula. 

However, the solution restricts interference to a one-dimensional principle with 

anti-parallel data flow. It is dedicated to analyze concurrent edges and violates 

restrictions for non-recursive interference nets.  

A solution of the one-dimensional wave equation  
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is d’Alembert’s formula, for example in the form 

 )()(),( 21 xctuxctuxtu −++=  (7) 

Two time-functions u(x,t) = u1(x,t) + u2(x,t) interfere here on a one-

dimensional sphere (wire, axon etc.). Neglecting the details, d’Alembert’s formula 

allows also this solution. The public solution u(x,t) = u1(x+ct) + u2(x-ct) shows 

one forward u1(x+ct)  and one backward traveling wave u2(x-ct) [9]. The wave 
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trail runs there in front of the wave. We use the form with trails at the end of 

waves. 

Any interference integral appears only, if we introduce a non-linearity that 

enforces the place of wave meeting. Integration of added time functions shows 

always a residual interference value at locations, where one of the time functions 

is zero. That means, the integral value at any location tends to increase 

independent of other properties.  

 

Multiplication of Waves 

Multiplication of positive time functions removes the integral at all locations, 

where one of the time functions is zero. The approach 

 )()(),( 21 xctuxctuxtu −∗+=  (8) 

has special potential for demonstrational purposes [9] and in signal processing, 

for example for modulation, demodulation or coding (AM, FM, GPS).  Using 

single waves, the interference integral appears at the place of wave meeting, see 

animations. If one of the contra-directional flowing time functions comes later, the 

meeting place of time functions shifts to a location in direction of the delayed 

function. 

Pixel Calculus and Time-Parallel Data Flow  

To overcome the restrictions of one-dimensional contra- directional waves, we 

apply a node-convention. In opposite to anti-parallel calculation it simplifies the 

task. The node abstraction suggests, that spherical arriving waves show a time-

parallel data flow. It allows the calculation of waves in n-dimensional networks.  

 

Fig. 4: Time-Parallel Data Flow (Pixel Calculus). The example demonstrates the time 

parallelism: For numerical addition we can write y1 = f3+g4+h2, y2 = f4+g5+h3, y3 = 

f5+g6+h4 etc. In Scilab we write only y = f+g+h, if y,f,g,h are equal sized vectors. 
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At each node of the IN, the multi-directivity in space corresponds now to a 

parallelism of data flow in time dimension.  

If time functions are lists, they relate to element-by-element computation. 

Scilab [14] writes element-by-element multiplication of vectors with dot-star, for 

example c = a .* b.  

Examples for Interference Systems 

Open Integration - Photography, Ultra Short Time Measurement 

 

Fig. 5: Example of a Boolean race logic with additional delay difference 2τ (!) and integrator 

(compare with data set in Tab.1) 

Supposing, two spiking time-functions (a, b) in the range {0…1} with zero-level 

{0} and information level {1} meet in a way comparable to Fig.1. The gate inputs 

are ai and bi, the gate delivers the output xi = ai&bi (Boolean AND-operation), i  is 

the gate index. 

Resulting xi spikes apply in electric interference applications generally to short, 

to register them. To get a possibility for registration, we have to integrate over xi 

to get a higher accumulation yi. The slope adds each result of xi to yi  (integration) 

for each location or net node (we have three here): 

 iiiiii xyybax +=→= &    (integration) (9) 

The value of yi shows the interference integral level. It shows, how many Ones 

meet at the gate.  

To see the effect of any change in position, the τ in Fig.1 delays the related 

time function a or b by two time steps, Tab.1. We suppose infinite time function 

sequences. Any vector a, b, x, y is a small part of a infinite long sequence. The 

normal position of gates may be in the middle (x2, y2). Additional delays mark the 

left or right positions (x1, y1) and (x3, y3).  

Left and right positions can symbolize two cases:  

• one of the time functions a or b is delayed (here by two steps) 
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• the middle gate moves the position to left or right (with additional delay) 

Both cases are equivalent. Each ‘hit’ of Ones in (a=1 &  b=1) produces a result  

x = 1 and increases the respective accumulator y by one.   

Using a time function a and a time function b that shifts on the time scale 

(left/right) by two steps (τ∼ n =2) relative, the effect of delay shift on the 

interference integral can be studied by example, Tab.1 and Fig.1. 

In case of maximum interference of Ones between a and b (middle position, x2) 

the accumulation is maximal (y2 = 6). A variation of delay between inputs a and b 

by two steps shows, that the interference integral value y varies (y1, y3). The value 

of the accumulator yi marks the number of hits.  

Table 1: Interference integrals of two time functions. Example for an ‘open’ 

integration process for logic gates (data set for Fig.4): 

Direction of time flow � 

a(t)    =[ 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 ] 

b(t-2)  =[ 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 ] 

x1 =[ 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 ] 

y1 =[ 0 0 0 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 ] = 3 

 

a(t)  =[ 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 ] 

b(t)   =[ 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 ] 

x2 =[ 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 ]  

y2 =[ 0 0 0 0 0 0 1 2 3 3 3 3 3 4 5 6 6 6 6 ] = 6 

 

a(t-2) =[ 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 ] 

b(t) =[ 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 ] 

x3 =[ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ] 

y3 =[ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 ] = 1 

Photonic Interference and a Photonic Paradox 

Inspecting light waves and their interference integrals (images) we find a paradox. 

The addition of many time functions at a detecting field (retina, photo plate, 

screen) produces in theory no interference integral, if we compare photonic waves 

with symmetric, sinoidal waves, see the movie in [9] (Sinoidales Integral bei 

Addition, #sinadd). If a single wave has at a certain location an integral value of 

zero, also the addition of many waves delivers zero. To get an image, we have to 

suppose any nonlinearity. The detecting field produces the solution: it has to 

transform the linear overlay by a nonlinear operation using the squaring terms 

‘energy’ or ‘intensity’. 

Light waves interfere on a photo film, producing the image as interference 

integral. As longer is the exposure time, as brighter is the exposure. Film exposure 

appears proportional to shutter opening time. 
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Let x(t) be the sum of all light waves reaching the target place, the resulting 

time function y(t) of the film is the integral over time. Suggesting the time 

function x(t) of light consists of periodic, symmetric waves we know from DC-

current, the interference integral is always zero [9]. Positive integral parts delete 

the negative,  

 0)()( == ∫
∞

∞−

dttxty  (10) 

To get any exposure different to zero, the observed time function x(t) cannot be 

periodic and area-symmetric to time axis, see the animation films [9]. The 

interference integral disappears for symmetric time functions. 

If the time function integral y(t) has to be different to zero, we have to suppose 

a non-linear rectifier (film, CCD, eye) within the chain, squaring the time function 

 0))(()( 2 ≠= ∫
∞

∞−

dttxtY .      (energy, intensity) (11) 

If the effect of the positive part of wave to any photo sensor or film is identical 

to the effect of a even high negative part, we talk about energy or intensity.  

Overexposure of Photo Plates and Integral Divergence for Open Integration 

As longer is the integration time, as more increases the value of any interference 

integral for a photo film. The value depends directly from the length of measuring 

interval. The interference integral accumulates to a steady growing time-function 

of the pixel or sensor. We will call it an ‘open’ integration process. The 

accumulation grows to infinite for infinite long time or sequences. If not zero, the 

resulting integral is divergent in most practical cases  

 ∞→∞→ tfortf )( . (12) 

If the Ones are interfering Planck photons, we have to stop the integration 

process after a certain time to avoid overexposure.  

Investigation of photography brought the shutter to stop overexposure of 

interference integration process on a photo plate. Open integration stops after the 

exposure time. The accumulator resets and the next image can start by opening 

again the shutter. 
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Fig. 6: Equivalent circuit for open loop integration of photographic films 

Integration with Loops – CCD, Nerves 

To limit the level of exposure, we can stop the exposure at the exposure maximum 

of the sensor or we can downscale the sensitivity relative with the maximum of the 

integral, for example using a moving average algorithm. Processes use sometimes 

a servo loop; we call them ‘loop integration’.  

Stop-Loop Integration – CCD Camera Chipsets 

Automatic exposure systems in CCD-camera chip sets stop the light exposure, if 

the first of the sensor pixels of the camera reaches the integration maximum. If 

y(t) exceeds max, the comparator sends a one. If not, it sends a zero value to the 

output. The shutter closes the input for all pixels, if maximum (max) exceeds. The 

accumulator value of each pixel represents now the light intensity.  

 

Fig. 7: Equivalent circuit for servo loop integration of CCD camera chip sets: photo-cell signal 

x(t) integrated signal y(t), comparator G. Shutter opens when y(t) exceeds the maximum value 

ymax. 

After reading the pixel values by the computer, the next image exposure starts 

with a reset of the accumulator value to y(t) = 0 (not drawn).  
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Pulse Frequency Integration (with loop) – Eyes, Nerves 

Translating the open integration method to our eyes means, as longer we look on 

an object, as more lightness our eyes would get. We know this is not true. We can 

look hours on an object without overexposure of retina. Nerves and eyes use a 

different integration method.  

While video cameras (CCD) conserve the accumulator until the computer has 

read it, by opposite nerve cells destroy the accumulator value just in the minute, 

the accumulator is full. It seems to make no sense.  

But integration time reflects now the input current. A high input current (high 

optical flux) brings a short integration interval, a low current a long integration 

interval. In the minute, the accumulator value y(t) at comparator comp is greater 

the maximum value ymax, the comparator output changes to high, reseting the 

accumulator.  

 

Fig. 8: Integrate-and-fire-neuron [2] as integrator in IN. First row: Lapique’s R-C network of 

1907 [11] enhanced by a comparator and a reset-loop. Right: Pulse principle of nerve. Second 

raw: Equivalent circuit with weighed input, defining pulse frequency. Right: Spike generation of 

the circuit.  

While the accumulator clears, the comparator changes back to zero state. A 

small spike appears at the comparator comparable to an output spike of a nerve 

cell just in the minute, the accumulator is full. 

If the input current loading the capacitor K = C is i, the voltage over C grows 

with  

 
C

i

dt

du
=  (13) 

The fire frequency f  for constant i  is for du = ymax = umax: 
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The brilliant idea behind nerve function is, to output the strength of accumulation 

as a duration or pulse frequency f. In neuro-computing, His idea [11] later comes 

back as ‘integrate and fire neuron’, compare for example [2]. Although his idea is 

over 100 years old, the specific association of spiking behavior with interference 

integration and the properties to avoid overexposure and to code the intensity to 

pulse length seems not to be well known. 

Averaging Integration Methods 

We found, interference integration incorporates the danger of divergence of the 

result. Looking for optimum integration methods, we find a class of “means”. 

Denoted by Wikipedia1 very different means plays a technical rule. We would 

limit the choice to typical interference methods.  

The principle of ‘mean’ reflects the integration with reset loop. Reset appears, 

if the value is maximal. The number of samples reflects the current.  

By difference mean methods add a number of samples and divide the result by 

the number. For a linear ramp, the result is identical to the area integral.  

Means used for Acoustic Cameras 

The reconstruction process [4] adds first the delay-corrected channels k of 

microphones to get a single, averaging time function (bipolar) reconstruction pi(t). 

It represents the approximation of the original time function at the respective 

location i of the origin 

 ∑
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+=
n

k

ikki tp
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1
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)( τ  (15) 

Integration in form of quadratic mean produces a single value Pi(t) for each 

pixel (noise pressure as color) for a given time point t 

 ∑
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1 http://en.wikipedia.org/wiki/Mean 
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The equation adds for a given time point t the squares of the next n samples 

producing a slot for each t.  In practice, the t repeats at a distance of T.  

A second mean Qi(t) allows a piecewise integration over some slots or frames 

to smoothen the acoustic film 

 ∑
=

=
m

k

iki P
m

tQ
1

1
)(  (17) 

 

Fig. 9: Means used for Acoustic Camera 

Using linear microphones and linear ADC’s, the arithmetic mean in acoustics 

appears with the unit for sound pressure in Pascal (mostly in mPa). The sound 

level L is the logarithmic measure of the sound pressure related to a reference 

value, the threshold of human hearing p0 = 20µPa 

 dB
p

tP
L i








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log20  (18) 

For a continuous function the interference integral would appear with sample 

frequency fs and sample time T = n/fs in the form  

 ττ dp
T

tP ii  )(
1

)(

T

0

2

∫=  (19) 

Conclusion 

If a time function is leaving one-dimensional space, it becomes a wave. Main 

characteristic of a wave is that all points of the peak have the same delay to the 

source location.  

Different, interaction aspects between type of conjunction, time function and 

type of integration influence interference integrals.  
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Defining the node-edge construct, calculations of interference conjunctions can 

work time- parallel. In vector notation, the output is a simple element-by-element 

conjunction of input vectors. The result of integration process is a number, that 

defines in images the lightness or color of the node or pixel.  

Interferential functions correspond to relativity of wave expansion, not to gate 

location. Non-locality of interferential function reasons circuits, which deliver 

different behavior compared to state machines.  

To highlight locations of wave interference, the specific integral calculus has to 

be non-linear (multiplication, exponation).  

To process bipolar signals, sign switching restricts multiplication to two 

channels. Higher channel numbers need addition. Usability of multiplication for 

more then two signals restricts the time-functions to be monopolar (nerve).  

Like acoustic time functions, photonic time function waves are symmetric. The 

conjunction process has additional type. Hence, acoustic and photonic processes 

need asymmetric integration. The mapping (image projection) needs any form of a 

non-linearity (quadratic mean; intensity, energy, quadrature).  

Open integration produces integral divergence. To use the divergence technical, 

a time trigger has to stop the process.  

Using a comparator resetting the integral value, the run-time characterizes the 

integral value. Analyzing the loop process, we find nerve pulse generation as a 

special case to code the integral value at the output of nerve cells in time-domain 

(frequency).   

Using open integration with time limit, the quadratic mean technique of 

Acoustic Cameras appears as a specific integration method. 

We could observe, that the interference network approach allows the 

calculation of systems in different fields (digital gates, light and acoustics). Pulse 

frequency coding of nerve cells shows a special case of interference integration.  
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