
 1

How Network Topology Defines its Behavior
 Serial Code Detection with Spiking Networks

Heinz, Gerd

Gesellschaft zur Förderung angewandter Informatik e.V. (GFaI)

Berlin, Germany

heinz@gfai.de

Abstract — In relation to technical sensors, the sound- or code-

analysis possibilities of nerve systems are fascinating. How can

we understand the amazing information reduction possibilities of

nerve nets? In the paper, operation of a nerve net is abstracted

by linear, time-invariant systems theory. Abstracted nerve nets

give the possibility to use convolution integrals (Faltung) for

analysis. The structure of a network reappears, interpreting a

specific burst. Nerve system looks like a gigantic convolution

engine with billions of nodes and branches, transgressing every

technical possibility of analysis. Basing on interference networks

(IN) theory, the paper tries to connect the theoretical basis of

neural network (NN) theory and linear time-invariant (LTI)

systems. As a first step, finite impulse response (FIR) filter theory

allows to use time-discrete convolution for switching between

system response of a nerve net, its behavior and the net structure.

Keywords — Faltung; convolution integral; interference

network; artificial neural network; FIR; nerve network.

I. MOTIVATION

Each of us knows the powerful ability of our nerve system
to analyze noises. We differ between the whisper of the wind
or the branding of waves, we know the songs of birds, we hear
dangerous noises of a defect car engine, we feel, if an airplane
starts. We know, when the washing machine comes to the end,
when the coffee maker is ready. We decode the melody of our
mobile phone. We subdivide between different voices of our
friends. Our brain system has a fantastic ability to differ noises
in frequency, tremolo, length or modulation. Moreover we are
able to communicate with spoken words and sentences. Last
not least many of us speak and understand more than one
language.

Medical research detects since more than 150 years
relations between brain injuries and artifacts in behavior [28],
[30], [31]. Modern MRT makes it possible to inspect the global
activity of brain regions relating to acoustical inputs nearly in
real time. But medical research knows bursts – random like
periods of rapid spiking followed by silent periods [26] of
nerve cell soma.

On the other hand, the theory of Neural Nets (NN) gave lots
of ideas, how nerve cells can learn. But nearly nothing is
known about the basics: How does nerve system work?

From standpoint of electrical filter theory nerve nets have
no processor for the Fast Fourier Transform (FFT). Our sound
and code analysis systems work in time domain. A basic
approach for filter theory in time domain is “convolution”

(Faltung). We will test convolution to switch between system
responses of nerve nets, behavior and net structure.

Thinking about behavior of nerve systems the author
proposed in 1993 the mathematics of “convolution” [16] to
understand bursts. Although this is a theoretical abstraction, it
could be helpful for a better understanding of code selection or
sound detection in nerve nets. Let’s analyze this 20 years old
idea more in detail.

Simplified, any convolution process can be seen as unified
multiplication of two series or functions. If we have two time-
functions, we need to mirror one and to shift it contrarily over
the other – folding a paper sheet, this can be done very easy.
Thus the procedure is given the name “Faltung” or
“convolution”.

II. HISTORY OF “CONVOLUTION”

Implicitly, the knowledge about convolutive functions [14]
seems to be very old. For example, the “Cauchy product” [8]
showed the discrete convolution of two sequences. The English
Wikipedia [27] tells about comparable formulas of S.F.
Lacroix, P.S. Laplace, J.B.J. Fourier or S.D. Poisson. But the
terms “convolution” or “Faltung” appeared years later.

For the first time, David Hilbert used the word “Faltung” in
1906 [10], but not in the sense we use nowadays.

Vito Volterra analyzed “fonctions permutables et leurs
compositions” [13]. In 1913 he introduced the integral form
and showed equality of a today unknown symmetrical form
and the known unsymmetrical form of the convolution integral
(which seems to suggest, one of the input functions is
standing), but without using the terms “convolution” or
“Faltung”.

Following own investigations, the name “Faltung” and the
known formula was used for the first time by Felix Bernstein
[1] in 1920. Beginning 1922, Gustav Doetsch spread the
terminus to the public with his works about – what he has
called - the “Laplace-Transformation” [2,3,4].

Using discrete time series of data-streams (PC) a discrete
form of Laplace-Transformation became interesting. Following
the English Wikipedia, Ragazzini and Zadeh [12] introduced
1952 the discrete form. In the 1960’s Dobesch wrote
interesting introductions [5,6] about the discrete form,
nowadays called “z-Transformation”.

Workshop „Autonomous Systems”,

Hotel Sabina Playa, Cala Millor, Mallorca, 13.-17. Oct.2013

 2

After world war II the German word “Faltung” was more
and more replaced by the English word “convolution”.

Interesting properties were found for systems
characterization in circuit theory, suggesting the standing time
function is called transfer function or pulse response. For
example, if the system input is a spike, the system answers with
the transfer function. If it is a ramp, the system integrates over
the input, while the DC output gain is the sum of the
coefficients and so on.

After 1957, convolution obtained a central rule with
Mikusinski’s operator calculus [9] for time-domain calculation
in linear systems.

III. CONVOLUTION BASICS

Most importance has convolution up to now for digital
filter theory in linear, time-invariant (LTI-) systems. In
practice, a Finite Impulse Response Filter (FIR) is a direct
technical implementation of convolution. Semiconductor
integration technologies of modern receivers (WLAN) use
FIR- and IIR- filters within the modulation and demodulation
process of signals. Analog-Digital Converter circuits (ADC)
use them to band-limit signals.

In our sense convolution can show the flow of one time
function x(t) over a (standing) other z(t), resulting in a third
time function y(t), whereby one time function appears time
inverted (folded).

τττ dhtxthtxty
t

)()()(*)()(
0∫ −== (1)

In discrete time it is the series of convolution sums in form
of the Cauchy product [8] – the universal multiplication of two
vectors.

kn

n

k

kn xhy
−

=

∑=
0

 (2)

Equation 1 shows the convolution in integral form,
equation 2 is the discrete, computer-based style. Find
convolution examples for Scilab in [24].

We suggest, incoming functions agree in domain of
definition. Time functions should be nonzero only in the region
of interest.

IV. INTERFERENCE NETWORK (IN)

Any information processing in nerve system needs
hundreds of synchronous, parallel pathways to carry
successfully a dominant signal [28]. But all the pathways
(branches) carry information very slow. And any pathway has
different thickness, length and delay. Nerves doesn’t go
straight through the body. Thus synchrony of many of them is
practically impossible. Synchrony has to appear in a new sense:
information processing can only happen at locations of
interference of the signal, that comes multiple from far away.
This concept, developed in “Neuronale Interferenzen” 1993
[16] demanded a new, specific wave-like information theory,
softly comparable to optics.

Different new, theoretical concepts appeared, like waves of
information, interference integrals (used for the investigation of

acoustic cameras) or cross- or self-interference to distinguish
between “seeing” and “hearing”.

In the 1990
th
, my talks about pulse-propagating, artificial

neural nets (ANN) or time-delaying neural nets (TDNN)
caused permanent misunderstandings. Thinking about pulse
interferences in large and slow networks I found, that any
smallest delay mismatch changes the information processing of
the net. State machine abstractions in ANN- or TDNN-theories
destroy the function of the net. Therefore, between 1995 and
1997 I proposed the new term “Interference Network” (IN) for
the precise modeling of spiking and delaying neural networks
with nerve-like properties [17…23].

The basic idea is, that the reason for the processing
capability of a nerve network lays in different delays on nerve
fibers – not in the way, how to learn or how to construct the
weights. Neural network theories until 1993 had artificial
clocking structures, destroying every natural system response
of the network.

A first step to apply the idea of the very special processing
capabilities of IN was the manuscript “Neuronale
Interferenzen” (1993) [16]. The second step was a simple
application of an IN to produce acoustic photos and films
between 1994 and 1996. The “Acoustic Camera” (AK) was
born [25]. But the AK became a self-runner, the theory behind
the central and successful IN-idea remain unknown. The third
step is the analysis of serial code detection – this work.

V. ABSTRACT MODEL OF A NERVE NETWORK

We assume a simplest, (probabilistic
1
) interference network

(IN) to model a nerve net on a high abstraction level. The net
consists of nodes and branches. The nodes combine
information of connected branches and refreshes the outputs.
Branches have only the task, to delay time functions relative to
their width and -length. The amplitudes are unchanged. In
nerve system we find behind analog signal levels spike-like
pulses with binary level, we simplify “0” or “low” for
-60…-70 mV and “1” or “high” for +30 mV (spike). Output
functions of nodes regenerate the levels.

Using a branch of delay τ, it delays the incoming time

function f(t), delivering an output f(t-τ). If the branch has to

deliver a time function at τ =0, we have to pre-delay the input

(non-causal) with a positive τ,

f(t)�f(t-τ), f(t+τ)�f(t). (3)

1
 A pyramidal neuron has round 7400 synapses [28].

Figure 1.
˙˙˙ ˙˙˙ ˙˙

 Abstract, diffuse nerve cell arrangement. Different neurons carry

paths between neuron N and N’. Each path has a different delay.

 3

Following an old idea in Kap. 8b on page 181 of [16] we
construct a simplest IN-model to understand convolution
properties in a simplified, pulsing nerve system.

Two nerve cells N, N’ shall have the ability to communicate
over a number of n dendritic- and/or axonal branches together.

Each branch has a different signal delay τi. The next circuit
(Fig. 2) simplifies the net of Fig. 1 again.

Any incoming time function x(t) is delayed on the different

paths with different delays τi . So any single time function at
neuron N runs independently delayed over the network,
producing at N’ an input after the delay. Neuron N’ multiplies
its inputs with the weights wi and adds the incoming time
functions. Last but not least, any level adaptor (with additional
threshold function etc.) guarantees output y(t) levels in the
same range {0…1} as input levels x(t). To calculate the output

y(t) we add all x(t-τi) multiplied by weight wi. Without
threshold, the net output can be for example

∑ −=
n

i

ii txw
n

ty)(
1

)(τ . (4)

In this simple, abstract form, the network can be
represented by a vector of delays T and a vector of weights W,
the index is the branch number

],...,,[21 nT τττ= , (5)

],...,,[21 nwwwW = . (6)

The delay vector T has an interesting property, we need
later: it resists the addition or subtraction of global delay

constants τ. The network function stays unchanged by

variations of τ

τ±= TT . (7)

The function of the net is simple. Any input x(t) appears
with a different delay at neuron N’. If the input is a single
spike, the output of the net is a burst. Changing the weights, the
function can be opposite: giving the specific burst that opens
the net, the net answers with a spike. The net acts like a
keyhole. Only the right pattern – the key – can open it. In this
work we will consider both cases, the code-generation and the
code-detection of the net.

The net has practical importance. Overall in nerve system
we find bursts. But in the living animal not so much is known

about nerve connections. We have no tools to see or to get the
net structure. Moreover, using a microscope, without chemical
staining we can nearly not find a single nerve fiber.

Is it possible to reconstruct partial nerve structures from
burst records?

VI. CONSTRUCTION OF TRANSFER FUNCTION

The idea behind the following algorithm is to transform the
net structure into a filter structure. Interpreting the transfer
function H of the filter, we can re-translate the delay structure.
Inspecting the figures in Kap.8b, p.181 [16] we find analogies
to finite impulse response (FIR-) filters. Sorting delays by a
fixed delta-T, an association to convolution appears.

If we interpret a transfer function H of a linear system (in
time domain), H can be seen as a discrete time function with
sample rate fs and with growing index i

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …] (8)

Each sample index (2…9) can carry a zero (for nothing) or
a number for a weight. Relative to any fixed starting point, the
index of the sample carries the relating delay. Interpreting a
real transfer function, for example

H = [… 0, 1, 0, 0, -1, 0, 1, 0,…] (9)

we interpret the first 1 as the weight for the delay index 2.
The next -1 is the weight for delay index 6. The last 1 is the
weight for delay index 8. And the delay of index 8 is eight
times the sample interval. The distance between following
values of transfer function H is the sample interval ts (of the
sample rate fs = 1/ts). So our transfer function H example
represents three delays, T = [3ts, 6ts, 8ts] with the corresponding
weights W = [1,-1 and 1].

In other words, if the T-vector contains a value of 8 ms and
the sample rate is 10 kHz, we have to fill the index number 80
(8*10) of H with the corresponding weight. Thus, any resulting
H-vector will be longer than the generating T-vector.

It is possible, that the delay-vector T contains some
identical values at different places. In H, we have to add the
corresponding weights.

To construct H, we follow the following steps:

a) Multiply the T-vector with the sample rate, that H will
contain. Recall, all members of the T-vector must be integers,
they are later index numbers in H. The length of H is larger
than the maximum delay in T, we need max(T) to construct the
whole, empty H-vector, we find

length(H) = max(T). (10)

b) Take a delay τi of the T-vector. Add the corresponding
weight wi (with the same index i) at the position in H that is
defined by the index i, as in the following formula

H(T(i)) = H(T(i)) + W(i). (11)

c) Do task b) for all delays and weights.

Let’s bring this ideas into an algorithm. For automatic
conversion of the net structure including the vectors (T,W) into

Figure 2.
˙˙˙ ˙˙˙ ˙˙

 Simplified abstraction of the network of Fig.1. The two cells N, N’

connect over branches with different delays τi and weigths wi.

 4

the system transfer function H the Scilab-function H =
trans(T,W,fs) is introduced. An additional parameter is the
sample rate fs, it defines the delay time between subsequent
values of the H-vector. For a better understanding of the code
we use uppercase letters for vectors and lowercase letters for
single numbers and values. Vectors start in Scilab with the first
element indexed by number one (not with zero).

function [H] = trans(T,W,fs);

 if length(T) == length(W) then
 T = T * fs; // apply sample rate of H

 T = round(T); // T becomes index - integer

 H = 1:max(T); H = H * 0; // create an empty H

 for i = 1:length(T), // for all T(i), W(i)
 j = T(i), // delay becomes the H-index

 H(j) = H(j) + W(i), // add the weight to H

 end // for

 else // if
 printf('\n\nerror: T and W have different size\n');

 end // if

endfunction;

To minimize the size of the resulting transfer vector H, it is
possible to subtract the minimum delay of T from all delays of
T (compare with Eqn.7)

T = T – (min(T)+1). (12)

The addition of +1 points to the index number one in H.
This is comparable to removing leading zeros of H. At the end
of H, zeros can be removed too. But going into the frequency
domain, any changing at frontal zeros can cause problems,
because it changes the transfer function.

VII. APPLYING A CONVOLUTION

Our time function y(t) can be characterized as convolution
of the input time function x(t) and the transfer function h(t).

y(t) = h(t) * x(t) (13)

Using vector/matrix style syntax for discrete convolution
we write

2
 here

Y = H * X, (14)

Y, H and X are vectors. For the computation of convolution
within Scilab, we use the convol-function

Y = convol(H,X). (15)

In mathematics and so in Scilab, the orientation of H- and
X-vector is opposite. If we like to use unidirectional vectors,
we should use cross-correlation instead of convolution.

Please test the Scilab-sources (freeware) in [24] to try some
own experiments.

VIII. SPIKE OUTPUT

We know different philosophical speculations about the
general function of nerve system. The favorite in this paper is

2 Notation: A star (*) denotes the convolution (in analog- or matrix form). For

matrix multiplication we use an upper dot (.). For the “dot product” of vectors

Scilab uses the notation dot-star (.*). If necessary, we will follow this style in

our WWW-examples.

the presumption, a nerve cell fires, if it has detected the code
that was learned before. With this suggestion, the nerve cell has
to fire, if the input code (vector X) is identical (using
convolution: time-inverse) to the transfer function H. The
transfer function acts as a keyhole, the input function as the
key.

In other words, to implement such a nerve-like behavior,
we are looking for an input function X, that gives a resulting Y
in form of a Dirac-like spike of the level a²

Y = X * H = [0, 0, … a², … 0, 0]. (16)

As solution we only find a single trivial case. If the
resulting Y becomes a Dirac-like pulse, X and H have also to be
one-shots. For example, for X = rev(H) = [0,a,0] we get
Y = convol(X,H) = [0,0,a²,0,0].

To solve our task better, we have to find powerful
approximations.

If we remember, that the comparable transformation of
convolution is the cross-correlation, we find, that we get
highest cross correlation for identical H and X. Translating to
convolution this means, X has to be exactly the time-inverse to
H. This might be a first result. So I wrote a rev() function [24]
for time-inversion.

From RADAR-technology we know useful approximations
of comparable kind, like chirps or Barker-codes [29] to get
sharp pulses at the end of a complex transmission chain. Using
any Barker-code, we get best approximations for the behavior
we need. For example, if we use the Barker-code of length 5
the convolution is

H = [1, 1, 1, -1, 1], X = rev(H), (17)

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1]. (18)

As longer is the Barker-code, as higher becomes the Dirac-
pulse relative to the environment. No wonder, that modern
wireless-, GPS- and RADAR -technologies use Barker-codes
for example in form of Direct Sequence Spread Spectrum
(DSSS) or Pulse-Compression technologies. However, there is
a problem: nerve systems do not have negative pulses.

IX. FREQUENCY ANALYSIS

Frequency analysis implies, to analyze a network with a
Fourier series of sin- and cos-functions, corresponding to the
Euler formula as solution of Eqn.19. This appears to be an
antagonism for spiking networks, spikes are not sinusoidal.
However, if we try it, we find special properties of interference
nets, that associate with the well known existence of synapses
of the exciting and the inhibiting type.

To analyze frequency properties of H, we apply the z-
Transformation, substituting H(n) by F(z) with

z = exp(σ+jω) to calculate the complex frequency transfer

function. Using σ = 0, we get the Time-Discrete Fourier
Transformation (TDFT) in frequency domain. To get the
frequency transfer function (Fourier spectrum) F we use the
symbolical equation

∑
∞

−∞=

−
=

n

njj
enHeF

ωω)()(. (19)

 5

The term ωn relates to a “digital frequency” ω = 2π f/fs.

Using Scilab [24], we write for the absolute vector of the
Fourier spectrum F = abs(fft(H)). With some additional scaling
we get a Fourier spectrum with identical number of coefficients
between input vector H and output vector F.

For example, if H has c = length(H) = 100 coefficients, the
resulting F will get 100 coefficients from 0…fs. If H has a
sample rate of 10 kHz, F will stop at 10 kHz. Each F-sample is
max(F)/c = 10 kHz/100 = 100 Hz wide. To suppress Nyquist
mirroring, we stop the plots at half the sampling frequency fs/2,
using only the lower half of the coefficients of F, see example
in Fig.5 and Scilab examples in [24].

Doing some exercises, we find a behavior that is well
known in systems theory: Using an unipolar input X and an
unipolar transfer function H (unipolar means with a level range
between zero and one), without exception the FFT-output has
its maximum at the lowest frequency. It is clear, that the DC-
power of an unsymmetrical time function is high. What can this
mean?

In our case it is higher than every convolution result at
higher frequencies. In other words: it is generally impossible to
use unipolar networks for series- or frequency analysis –
anyway. We need a bipolar system with positive and negative
weights to analyze serial codes (sounds etc.). We imagine the
problems, that Fuzzy Sets or Artificial Neural Networks have,
using unipolar functions only.

X. UNIPOLAR OR BIPOLAR SIGNAL LEVELS?

Thinking about exciting and inhibiting synapses in nerve
system, a question is, how to model them simple and adequate
on a highest abstraction level in systems theory. The existence
of the exciting, postsynaptic potential (EPSP) and the inhibiting
postsynaptic potential (IPSP) (see for a good introduction for
example [28]) allows a bipolar transfer function H with
exciting and inhibiting weights. But it makes no sense to
introduce bipolar inputs X. We only know unipolar, positive
pulses in nerve systems.

By contrast, Barker-codes [29] use the bipolar level interval
in the range {-1…0…1}, nerve pulses are unipolar in the range
{0…1}. Convolution of codes using unipolar signals is less
efficient compared to bipolar codes, for example in the case

H = [1, 1, 1, 0, 1], X = rev(H), (20)

Y = convol(X,H) = [1, 1, 2, 2, 4, 2, 2, 1, 1]. (21)

In comparison to equations 17 and 18 the resulting pulse is
less sharp.

Considering all aspects, it seems necessary to introduce a
bipolar transfer function H (for synaptic weights) but an
unipolar transmission function X over branches to model nerve
pulses. To test this, a random bipolar H can generate an
unipolar X using the Scilab-function clip(),

X = rev(clip (H, minlevel, maxlevel)). (22)

This function sets all coefficient values below minlevel to
minlevel (here zero).

Trials with identical random noise show a nice surprise:
Fig. 3 shows, that the resulting spike shape is not really
significant influenced using bipolar or unipolar inputs for X.

But using an unipolar value range for both, X and H, we find
significant, worse results, especially the DC-power in the FFT,
referring to the slowly growing convolution values near the
peak.

For nerve nets this could mean, that evolutionary
introduction of bipolar transfer functions with inhibition and
excitation brings (beside the frequency selectivity) a high win
in the ability, to built a robust and frequency selective
information processing.

By contrast, the introduction of additional negative pulses
would bring a further small win, but the absence of negative
pulses in animal kingdom shows, evolution decided to see this
as not really significant.

XI. INTERPRETING BURSTS

Is it possible to reconstruct a net structure with vectors T
and W from a given pulse response H? Trying it we get the net
vectors back in sorted order. The Scilab-algorithm is the
opposite to the construction of the transfer function. Each index
in H corresponds via the sample rate with a delay in T. The H-
value at that index is the corresponding weight in W.

function [T,W] = net(H,fs); // returns T and W

 j=1;

 for i=1:length(H) // H index i
 if H(i) == 0 then ; // do nothing

 else // write the value to W, the index to T

 W(j) = H(i);

 T(j) = i;
 j = j+1;

 end; // if

 end; // for

 T = T ./ fs; // remove sample rate
 T = T - min(T); // scaling

endfunction;

 Different publications on nerve system show uncountable
measurements of bursts in nerve system [26,28], many papers
on measurements report them. The question is: has bursting
something to do with net structure and the vectors T and W?

Supposing, the reason of a burst is a network with [T,W],
the delay and weight structure of that net creates a transfer
function H directly as a burst. In return, the measurement of a
burst can show the transfer function of a partial net! The
function [T,W] = net(H,fs) gives the net structure back, if we
give a burst measure into H, fs is again the sampling rate.

To summarize bursting and convolution:

Inspecting a net structure [T,W] comparable to Fig.2 it is
possible to convert it into the transfer function H and vice
versa.

We name a Dirac-like delta function (a spike or pulse of
variable tallness) with D (it is a vector, thus we write it
uppercase).

Open a door: If input X is the key for the keyhole H with
X = rev(H), then a spike D appears at the output Y,

X * H = Y: rev(H) * H = D. (23)

Pulse response: Is X a single one-shot (P), the convolution
with H gives the pulse response (this is H) at the output

X * H = Y: P * H = H (24)

 6

XII. EXAMPLE

Fig. 4 shows the Scilab-result of a convolution example, if
the key is the right one. We find the input function X opposite
to the transfer function H. In the last row, Scilab calculates our
threshold function. Using a single spike as input, the example
can show, why the Laplacian transfer function is called the
“pulse response”.

Using a sampling frequency of f = 1 kHz (1 ms) the delay
mask T contains delays of 3 branches in milliseconds

]8,3,5[],,[321 == τττT . (25)

The corresponding weight vector W of inputs has the values

]1,5.0,1[],,[321 == wwwW . (26)

A positive value stands for excitation, a negative for
inhibition of the input.

The delay vector is robust against addition or subtraction of
constants, the response code will not change.

FIR-form, reducing form: To get a minimum vector length
for the transfer function H, delays reduces by the minimum

delay τ2 = 3. After index sorting we get

]5,2,0[],,[321 == RRRRT τττ . (27)

To get the transfer function H, the weights place at the
corresponding delay number, that means a weight wi is to set at

the position of the index corresponding to delay τi

]1,1,5[.],,[321 == RRRR wwwW . (28)

This is calling the reduced form or FIR-form of the net
structure. Automatically, the reducing form results of any
reconstruction with function [T,W] = net(H,fs).

We recall, H is a linear spaced time axis, subdivided by the
sampling clock, the difference between subsequent samples
equals the inverse sample rate 1/fs, here 1 ms. The index of H
is then

...],9,8,7,6,5,4,3,2,1[...)(=Hindex . (29)

The original, corresponding weights occupy the positions
(5, 3, 8), ignoring leading and trailing zeros we get

),0,0,,0,(312 wwwH = . (30)

The result is the transfer function H of the network

()1,0,0,1,0,5.0=H , (31)

see Fig.4. The result is the same, using reduced vectors Tr,
Wr or original vectors T,W.

Doing the convolution we use an equal spaced input vector
X with identical sample rate. If the vectors X and H differ in

size, the shorter vector fills in the Scilab-example with zeros.
The plot sizes between input and output differ, convolution of
length(X) = n, length(H) = m gives length(Y) = n + m – 1, we
fill the rest with a zero vector.

If the output is not normalized by the inverse number of
inputs 1/n, finally, we append any threshold function U(k) to
reconstruct the output level. The sum of weights is w = (.5 + 1
+ 1) = 2.5. Epsilon should be smaller than the smallest weight

(0.5). Choosing ε = 0.3, the threshold function works correctly.
If the output function comes in the region of the sum of

weights (ω−ε), the output fires. Epsilon (ε) has to be smaller
than the smallest weight.

|),min(|0|,|
1

i

n

i

i www <<=∑
=

ε (32)









−>

−≤
=

)()(,1

)()(,0
)(

ε

ε

wkYif

wkYif
kU . (33)

We find, that any 1/n norm is not really a best solution.
Using different variable types and vectors, the method

(ε
.
max(Y)) seems to be more robust for wide variations of

tasks, see Scilab-code [24].

In the example Fig. 4, we use a nearly identical, but
opposite vector X as a key, the output of the neuron gives a
single spike: the neuron tells us: “I understood the serial
code!”.

Besides GIF- and PS-plot outputs the Scilab-procedure
transfunc.sce (download [24]) gives an additional text-file
output with some system values:

conv_3Spikes_noclip_1kHz_all.txt

sample rate fs = 1 kHz
original delays T = [5 3 8]

original weights W = [1 0.5 1]

reduced delays Tr = [0 2 5]

reduced weights Wr = [0.5 1 1]
transfer fct H = [0 0 0 0.5 0 1 0 0 1 0]

key input X = [0 1 0 0 1 0 0.5 0 0 0]

output Y = [0 0 0 0 0 1 0 1 1 0 2 0 0 1 0 1 0 0 0]

thresh U = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
abs(F) =

[2.5 1.4 0.5 1.1 1.8 1.9 0.5 1.9 1.8 1.1 0.5 1.4]

generator: transfuncnet.sce, 13-Aug-2013
www.gfai.de/~heinz/techdocs

Increasing the sample rate fs, the transfer function becomes
proportional longer. Setting fs = 10 kHz we get a different H
with weights at the index positions (50, 30, 80) or for the
reduced and sorted vector at (0, 20, 50).

If the transfer function is periodic (see web-examples in
[24]) a Fourier analysis can produce interesting results. The
Scilab code generates in a last step a new plot window,
showing the transfer function H and a rectangular, absolute
Fourier window of H, see example in Fig.5.

XIII. CONCLUSION

To characterize abstract properties of nerve networks in
time- and frequency domain, following [16], Kap.8b, p.181 an
elementary net can be simplified using a linear, time-invariant
(LTI-) system description containing a delay vector T and a
weight vector W, Fig.1 and Fig.2.

 7

A procedure [H] = trans(T,W,fs) calculates the (time-
discrete) transfer function H (pulse response) of the net from
delay vector T (delay mask) and weight vector W.

The inverse procedure [T,W] = net(H,fs) reconstructs the
net structure [T,W] from transfer function H.

Interpreting burst measurements of nerve nets as transfer
function H of a partial network, the reconstruction of the net
structure [T,W] is possible.

An example shows, how the (delay) structure of the net
codes its serial behavior. Weights are the exciting or inhibiting
connections, Fig.4.

Inspecting frequency domain of unipolar and bipolar H and
X, the maximum DC-level appears for nets with unipolar input
vector X and unipolar transfer function H. In this sight,
unipolar nets, common in ANN and Fuzzy theories, do not
have the ability to detect serial codes or frequencies.

Analyzing convolutions with bipolar and unipolar signal
levels of interfering time-functions the natural, mixed usage of
unipolar inputs (positive spikes) and bipolar transfer functions
(exciting and inhibiting) seems to be an interesting compromise
between pure bipolar (+1…-1, best) and pure unipolar (0…1,
worse) levels, Fig.3.

Find Scilab code for the given exercises and different
convolution examples with interference nets on the website
[24].

XIV. THANKS

Thanks to Prof. Dr. Wolfgang Halang and Prof. Dr. Herwig
Unger (FernUni Hagen) for the given encouragement to
proceed publications about properties of Interference
Networks. Thanks to Dr. Emeterio Navarro (GFaI) and Jutta
Dühring (Uni Hagen) for their important help in the review
process. Special thanks to my wife for her patience over the
last twenty years.

A last thank is given a supporter of the first hour of the IN-
theory. We remember Prof. Dr. Hans-Heinrich Bothe (HTW
Berlin / TU Berlin / Uni Kopenhagen-Lyngby), he died against
a rock fall in the Südtiroler Alpen at July 30, 2013. With his
warmness, persistence and power to organize large
NAISO/ICSC Fuzzy-/Neuro-Conferences, Hans remains in our
hearts.

XV. REFERENCES

[1] Bernstein, F.: Die Integralgleichung der elliptischen Thetanullfunktion.
Sitzungsberichte der preussischen Akad. der Wiss. XL, 21. 10. 1920, S.
735-747, www.dwc.knaw.nl/DL/publications/PU00014734.pdf

[2] Doetsch, Gustav: Die Integrodifferentialgleichungen vom Faltungstypus.
Mathematische Annalen 89 (1923), Springer Verlag Berlin. Editor:
Albert Einstein. http://gdz.sub.uni-goettingen.de

[3] Doetsch, Gustav: Theorie und Anwendung der Laplace-Transformation.
J.Springer Berlin, 1937, 436 S.

[4] Doetsch, Gustav: Anleitung zum praktischen Gebrauch der Laplace-
Transformation. R.Oldenbourg, München, 1956

[5] Dobesch, Heinz: Laplace-Transformation von Abtastfunktionen. Verlag
Technik Berlin, 1969

[6] Dobesch, H., Sulanke, H.: Zeitfunktionen. Verlag Technik Berlin, 1969

[7] Fettweis, Alfred: Beweisansatz der Identität zwischen Interferenz- und
Faltungsintegral. Persönliche Kommunikation per Email, Bochum,
4.11.2011, www.gfai.de/~heinz/publications/animations/beweis.pdf

[8] Cauchy product see http://en.Wikipedia.org/wiki/Cauchy-product

[9] Mikusinski, Jan: Operatorenrechnung. VEB Verlag der Wissenschaften
Berlin, 1957. Polish: Rachunek Operatorów. Warszawa 1957.

[10] Hilbert, David: Grundzüge einer allgemeinen Theorie der linearen
Integralgleichungen. Vierte Mittelung. Nachrichten von der Königl. Ges.
der Wissenschaften zu Göttingen, Math.-physik. Klasse 1906. Berlin,
Weidmannsche Buchhandlung 1906, (157-227), S.159,
http://gdz.sub.uni-goettingen.de/en/dms/load/img/?PPN=
PPN252457811_1906&DMDID=dmdlog28

[11] Poisson, Siméon Denis: Mémoire sur la variation des constantes
arbitraires, dans les questions de méchanique (Variation of incremental
constants, pages 1-70). Mémoire sur la théorie des ondes (Theory of
Waves, pages 71..186). In: Mémoires de l'académie royale des sciences
de l´institut de France, depuis l´ordonnance du 21 mars 1816.
download http://books.google.de/

[12] Ragazzini, J.R., Zadeh, L.A.: The analysis of sampled-data systems.
Trans.Am.Inst.Elec.Eng. 71, Part II: 225-234, 1952. (en.Wikipedia.org)

[13] Volterra, Vito: Leçons sur les équations intégrales et les équations
intégro-différentielles. Paris: Gauthier-Villars, 1913. (Google Books
Reprint from University of Michigan Library, Lexington, KY, USA).

[14] Woltersdorf, Lothar von: Einige Klassen quadratischer
Integralgleichungen. Sitzungsberichte der Sächsischen Akademie der
Wissenschaften zu Leipzig, Band 128, Heft 2. Hirzel Verlag Stuttgart,
11/2000, ISBN 3-776-1091-7

[15] Wunsch, Gerhard: Geschichte der Systemtheorie. Oldenbourg Verlag
1985, Kap. 1.3.1.3.

[16] Heinz, G.: Neuronale Interferenzen. Manuscript and collection. 1993,
301 p., www.gfai.de/~heinz/publications/NI/index.htm

[17] Heinz, G.: Zur Mathematik des Nervensystems Raum-Zeit-Projektionen
und Interferenzmuster zwischen verbundenen
Wellenräumen.http://www.gfai.de/~heinz/historic/pressinf/bilder_d.htm

[18] G. Heinz, “Non-recursive interference calculi – a mathematical calculus
Immanent in nervous activity“, in Unger et al. (Eds.): Autonomous
systems, development and trends. Springer SCI 391, 2011, pp.171-186

[19] G. Heinz, ”Integrating System-Theory into Interference Networks -
relation between convolution integral and interference integral”, Lecture.
Workshop "Autonome Systeme", Oct 30 - Nov 3, 2011, Gran Camp de
Mar, 07160 Camp de Mar, Andratx (Mallorca, Spain). Homepage:
www.gfai.de/~heinz/publications/animations/convolution.htm

[20] G. Heinz, “Interference Networks as Generalizing Signal Theory
between Integral Transformations, Neural Nets, Optics, Electrics and
Acoustics”, Plenary invited lecture, 7th Int. Conference on Computing
and Information Technology IC2IT, May 11-12, 2011, King Mongkut's
University of Technology, Bangkok.

[21] G. Heinz, "Two Decades of Interference Network Research", Keynote
speach, Heinz, G.: Two Decades of Interference Network Research.
Keynote speach. 3rd International Workshop on nonlinear Dynamics and
Synchronization (INDS'11) and 16th International Symposium on
Theoretical Electrical Engineering (ISTET'11). University Klagenfurt,
Austria, Jul 25-27 2011 (abstract and ppt on the web).

[22] G. Heinz, „Von der Erfindung bis zum weltweiten Vertrieb – Zur
Entwicklung der akustischen Kamera“. VDI-Bezirksverein Berlin-
Brandenburg, Arbeitskreis Technikgeschichte Dr.-Ing. Karl-Eugen
Kurrer und Dr. phil. Stefan Poser, Vorträge im Deutschen
Technikmuseum, Reihe Geschichte Moderner Technik, 27. Januar 2011

[23] G. Heinz, “Introduction to Wave Interference Networks”. Mallorca-
Workshop 2010 'Autonomous Systems' 24.-29.10.2010 Camp de Mar,
Mallorca, Spain, Shaker 2010, ISBN 978-3-8322-9514-1, pp.87-94,
http://www.gfai.de/~heinz/publications/papers/2010_autosys.pdf

[24] G. Heinz, Codeselektion nervlicher Art, Scilab-Examples,
http://www.gfai.de/~heinz/techdocs/index.htm#conv (7/2013)

[25] Heinz, G.: Zur Physik bildgebender Rekonstruktion akustischer Bilder
und Filme im Zeitbereich. 33. Deutsche Jahrestagung für Akustik,
DAGA 2007, Universität Stuttgart, Vortrag 243, 21.3.2007
http://www.gfai.de/~heinz/publications/papers/2007_DAGA_Reko.pdf

[26] Bursts in nerve system: http://en.wikipedia.org/wiki/Bursting (7/2013)

[27] Intro to convolution: http://en.wikipedia.org/wiki/Convolution (7/2013)

[28] Eccles, J.C.: Das Gehirn des Menschen. Seehamer Verlag, 2000.

[29] Barker codes http://en.wikipedia.org/Barker_code (7/2013)

[30] Rumelhart, D.E., McClelland, J.L. et al.: Parallel Distributed Processing.
Vol.1&2 MIT Press Cambridge, MA/ London, England, 1986.

[31] Anderson, J.A., Rosenfeld, E. et al.: Neurocomputing, Foundations of
Research. Vol.1&2 MIT Press Cambridge, MA/ London, England, 1988.

 8

Figure 3.
˙˙˙ ˙˙˙ ˙˙

 Spike detection by convolution of X and H with different signal levels, X is a time-reversal of H, X = rev(H). H has been produced by a random noise

generator, it is 240 samples long. The level limitation stands in curly brackets {}. Case a) shows unipolar convolution, case b) shows bipolar convolution. Case c)

shows mixed, nerve like vectors, X is unipolar, while H is bipolar. Case d) shows the FFT of unipolar H. The high DC-Potential (see the arrow) produces in the

FFT a maximum at zero Hertz, prohibiting any serial code detection.. Case e) is the FFT of a bipolar H. Generation with clipping_conv.sce, download [24]

 9

Figure 4.
˙˙˙ ˙˙˙ ˙˙

 Scilab-plots of an unipolar network. If the key X matches the keyhole code, a single spike appears at the output. From top to bottom: 1) automatically

generated transfer function H with the reduced vectors Tr and Wr; 2) a best key X for the hole H; 3) interference of X and H as convolution; 4) resulting output of

the network after the threshold function; 5) transfer function again; 6) Fourier-Transformation of the transfer function H. The mean of H has a significant DC-

potential, so the FFT has its maximum at zero Hertz. Frequency selection is practically impossible using such unipolar nets with a dominant low-pass.

Generation with transfuncnet.sce, download [24].

 10

Figure 5.
˙˙˙ ˙˙˙ ˙˙

 Scilab-plots of a mixed, nerve-like network with bipolar transfer function H and unipolar input X. From top to bottom: 1) automatically generated

transfer function H with the reduced vectors Tr and Wr; 2) a best unipolar key X for the bipolar hole H; 3) interference of X and H as convolution; 4) resulting

output of the network after the threshold function; 5) transfer function again; 6) Fourier-Transformation of the bipolar transfer function H showing a high-pass

response. Generation with transfuncnet.sce, download [24].

