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Abstract — In relation to technical sensors, the sound- or code- 

analysis possibilities of nerve systems are fascinating. How can 

we understand the amazing information reduction possibilities of 

nerve nets? In the paper, operation of a nerve net is abstracted 

by linear, time-invariant systems theory. Abstracted nerve nets 

give the possibility to use convolution integrals (Faltung) for 

analysis. The structure of a network reappears, interpreting a 

specific burst. Nerve system looks like a gigantic convolution 

engine with billions of nodes and branches, transgressing every 

technical possibility of analysis. Basing on interference networks 

(IN) theory, the paper tries to connect the theoretical basis of 

neural network (NN) theory and linear time-invariant (LTI) 

systems. As a first step, finite impulse response (FIR) filter theory 

allows to use time-discrete convolution for switching between 

system response of a nerve net, its behavior and the net structure.  

Keywords — Faltung; convolution integral; interference 

network; artificial neural network; FIR; nerve network. 

I. MOTIVATION 

Each of us knows the powerful ability of our nerve system 
to analyze noises. We differ between the whisper of the wind 
or the branding of waves, we know the songs of birds, we hear 
dangerous noises of a defect car engine, we feel, if an airplane 
starts. We know, when the washing machine comes to the end, 
when the coffee maker is ready. We decode the melody of our 
mobile phone. We subdivide between different voices of our 
friends. Our brain system has a fantastic ability to differ noises 
in frequency, tremolo, length or modulation. Moreover we are 
able to communicate with spoken words and sentences. Last 
not least many of us speak and understand more than one 
language.  

Medical research detects since more than 150 years 
relations between brain injuries and artifacts in behavior [28], 
[30], [31]. Modern MRT makes it possible to inspect the global 
activity of brain regions relating to acoustical inputs nearly in 
real time. But medical research knows bursts – random like 
periods of rapid spiking followed by silent periods [26] of 
nerve cell soma. 

On the other hand, the theory of Neural Nets (NN) gave lots 
of ideas, how nerve cells can learn. But nearly nothing is 
known about the basics: How does nerve system work?  

From standpoint of electrical filter theory nerve nets have 
no processor for the Fast Fourier Transform (FFT). Our sound 
and code analysis systems work in time domain. A basic 
approach for filter theory in time domain is “convolution” 

(Faltung). We will test convolution to switch between system 
responses of nerve nets, behavior and net structure. 

Thinking about behavior of nerve systems the author 
proposed in 1993 the mathematics of “convolution” [16] to 
understand bursts. Although this is a theoretical abstraction, it 
could be helpful for a better understanding of code selection or 
sound detection in nerve nets. Let’s analyze this 20 years old 
idea more in detail.  

Simplified, any convolution process can be seen as unified 
multiplication of two series or functions. If we have two time-
functions, we need to mirror one and to shift it contrarily over 
the other – folding a paper sheet, this can be done very easy. 
Thus the procedure is given the name “Faltung” or 
“convolution”. 

II. HISTORY OF “CONVOLUTION” 

Implicitly, the knowledge about convolutive functions [14] 
seems to be very old. For example, the “Cauchy product” [8] 
showed the discrete convolution of two sequences. The English 
Wikipedia [27] tells about comparable formulas of S.F. 
Lacroix, P.S. Laplace, J.B.J. Fourier or S.D. Poisson. But the 
terms “convolution” or “Faltung” appeared years later.  

For the first time, David Hilbert used the word “Faltung” in 
1906 [10], but not in the sense we use nowadays. 

Vito Volterra analyzed “fonctions permutables et leurs 
compositions” [13]. In 1913 he introduced the integral form 
and showed equality of a today unknown symmetrical form 
and the known unsymmetrical form of the convolution integral 
(which seems to suggest, one of the input functions is 
standing), but without using the terms “convolution” or 
“Faltung”. 

Following own investigations, the name “Faltung” and the 
known formula was used for the first time by Felix Bernstein 
[1] in 1920. Beginning 1922, Gustav Doetsch spread the 
terminus to the public with his works about – what he has 
called - the “Laplace-Transformation” [2,3,4].  

Using discrete time series of data-streams (PC) a discrete 
form of Laplace-Transformation became interesting. Following 
the English Wikipedia, Ragazzini and Zadeh [12] introduced 
1952 the discrete form. In the 1960’s Dobesch wrote 
interesting introductions [5,6] about the discrete form, 
nowadays called “z-Transformation”.  
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After world war II the German word “Faltung” was more 
and more replaced by the English word “convolution”.  

Interesting properties were found for systems 
characterization in circuit theory, suggesting the standing time 
function is called transfer function or pulse response. For 
example, if the system input is a spike, the system answers with 
the transfer function. If it is a ramp, the system integrates over 
the input, while the DC output gain is the sum of the 
coefficients and so on.  

After 1957, convolution obtained a central rule with 
Mikusinski’s operator calculus [9] for time-domain calculation 
in linear systems.  

III. CONVOLUTION BASICS 

Most importance has convolution up to now for digital 
filter theory in linear, time-invariant (LTI-) systems. In 
practice, a Finite Impulse Response Filter (FIR) is a direct 
technical implementation of convolution. Semiconductor 
integration technologies of modern receivers (WLAN) use 
FIR- and IIR- filters within the modulation and demodulation 
process of signals. Analog-Digital Converter circuits (ADC) 
use them to band-limit signals.  

In our sense convolution can show the flow of one time 
function x(t) over a (standing) other z(t), resulting in a third 
time function y(t), whereby one time function appears time 
inverted (folded).  
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In discrete time it is the series of convolution sums in form 
of the Cauchy product [8] – the universal multiplication of two 
vectors. 
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Equation 1 shows the convolution in integral form, 
equation 2 is the discrete, computer-based style. Find 
convolution examples for Scilab in [24].  

We suggest, incoming functions agree in domain of 
definition. Time functions should be nonzero only in the region 
of interest. 

IV. INTERFERENCE NETWORK (IN) 

Any information processing in nerve system needs 
hundreds of synchronous, parallel pathways to carry 
successfully a dominant signal [28]. But all the pathways 
(branches) carry information very slow. And any pathway has 
different thickness, length and delay. Nerves doesn’t go 
straight through the body. Thus synchrony of many of them is 
practically impossible. Synchrony has to appear in a new sense: 
information processing can only happen at locations of 
interference of the signal, that comes multiple from far away. 
This concept, developed in “Neuronale Interferenzen” 1993 
[16] demanded a new, specific wave-like information theory, 
softly comparable to optics.  

Different new, theoretical concepts appeared, like waves of 
information, interference integrals (used for the investigation of 

acoustic cameras) or cross- or self-interference to distinguish 
between “seeing” and “hearing”. 

In the 1990
th
, my talks about pulse-propagating, artificial 

neural nets (ANN) or time-delaying neural nets (TDNN) 
caused permanent misunderstandings. Thinking about pulse 
interferences in large and slow networks I found, that any 
smallest delay mismatch changes the information processing of 
the net. State machine abstractions in ANN- or TDNN-theories 
destroy the function of the net.  Therefore, between 1995 and 
1997 I proposed the new term “Interference Network” (IN) for 
the precise modeling of spiking and delaying neural networks 
with nerve-like properties [17…23]. 

The basic idea is, that the reason for the processing 
capability of a nerve network lays in different delays on nerve 
fibers – not in the way, how to learn or how to construct the 
weights. Neural network theories until 1993 had artificial 
clocking structures, destroying every natural system response 
of the network.  

A first step to apply the idea of the very special processing 
capabilities of IN was the manuscript “Neuronale 
Interferenzen” (1993) [16]. The second step was a simple 
application of an IN to produce acoustic photos and films 
between 1994 and 1996. The “Acoustic Camera” (AK) was 
born [25]. But the AK became a self-runner, the theory behind 
the central and successful IN-idea remain unknown. The third 
step is the analysis of serial code detection – this work.  

V. ABSTRACT MODEL OF A NERVE NETWORK 

We assume a simplest, (probabilistic
1
) interference network 

(IN) to model a nerve net on a high abstraction level. The net 
consists of nodes and branches. The nodes combine 
information of connected branches and refreshes the outputs. 
Branches have only the task, to delay time functions relative to 
their width and -length. The amplitudes are unchanged. In 
nerve system we find behind analog signal levels spike-like 
pulses with binary level, we simplify “0” or “low” for  
-60…-70 mV and “1” or “high” for +30 mV (spike). Output 
functions of nodes regenerate the levels. 

       

Using a branch of delay τ, it delays the incoming time 

function f(t), delivering an output f(t-τ). If the branch has to 

deliver a time function at τ =0, we have to pre-delay the input 

(non-causal) with a positive τ, 

f(t)�f(t-τ),     f(t+τ)�f(t).  (3) 

                                                           
1
 A pyramidal neuron has round 7400 synapses [28]. 

Figure 1. 
˙˙˙ ˙˙˙ ˙˙

 Abstract, diffuse nerve cell arrangement. Different neurons carry 

paths between neuron N and N’. Each path has a different delay. 



 3 

Following an old idea in Kap. 8b on page 181 of [16] we 
construct a simplest IN-model to understand convolution 
properties in a simplified, pulsing nerve system.   

Two nerve cells N, N’ shall have the ability to communicate 
over a number of n dendritic- and/or axonal branches together. 

Each branch has a different signal delay τi. The next circuit 
(Fig. 2) simplifies the net of Fig. 1 again.  

 

Any incoming time function x(t) is delayed on the different 

paths with different delays τi . So any single time function at 
neuron N runs independently delayed over the network, 
producing at N’ an input after the delay. Neuron N’ multiplies 
its inputs with the weights wi and adds the incoming time 
functions. Last but not least, any level adaptor (with additional 
threshold function etc.) guarantees output y(t) levels in the 
same range {0…1} as input levels x(t). To calculate the output 

y(t) we add all x(t-τi) multiplied by weight wi. Without 
threshold, the net output can be for example 

∑ −=
n
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In this simple, abstract form, the network can be 
represented by a vector of delays T and a vector of weights W, 
the index is the branch number 

],...,,[ 21 nT τττ= ,    (5) 

],...,,[ 21 nwwwW = .    (6) 

The delay vector T has an interesting property, we need 
later: it resists the addition or subtraction of global delay 

constants τ. The network function stays unchanged by 

variations of τ 

τ±= TT .  (7) 

The function of the net is simple. Any input x(t) appears 
with a different delay at neuron N’. If the input is a single 
spike, the output of the net is a burst. Changing the weights, the 
function can be opposite: giving the specific burst that opens 
the net, the net answers with a spike. The net acts like a 
keyhole. Only the right pattern – the key – can open it. In this 
work we will consider both cases, the code-generation and the 
code-detection of the net. 

The net has practical importance. Overall in nerve system 
we find bursts. But in the living animal not so much is known 

about nerve connections. We  have no tools to see or to get the 
net structure. Moreover, using a microscope, without chemical 
staining we can nearly not find a single nerve fiber.  

Is it possible to reconstruct partial nerve structures from 
burst records? 

VI. CONSTRUCTION OF TRANSFER FUNCTION  

The idea behind the following algorithm is to transform the 
net structure into a filter structure. Interpreting the transfer 
function H of the filter, we can re-translate the delay structure. 
Inspecting the figures in Kap.8b, p.181 [16] we find analogies 
to finite impulse response (FIR-) filters. Sorting delays by a 
fixed delta-T, an association to convolution appears.  

If we interpret a  transfer function H of a linear system (in 
time domain), H can be seen as a discrete time function with 
sample rate fs and with growing index i  

i = [… 2, 3, 4, 5, 6, 7, 8, 9, …] (8) 

Each sample index (2…9) can carry a zero (for nothing) or 
a number for a weight. Relative to any fixed starting point, the 
index of the sample carries the relating delay. Interpreting a 
real transfer function, for example 

H = [… 0, 1, 0, 0, -1, 0, 1, 0,…] (9) 

we interpret the first 1 as the weight for the delay index 2. 
The next -1 is the weight for delay index 6. The last 1 is the 
weight for delay index 8. And the delay of index 8 is eight 
times the sample interval. The distance between following 
values of transfer function H is the sample interval ts (of the 
sample rate fs = 1/ts). So our transfer function H example 
represents three delays, T = [3ts, 6ts, 8ts] with the corresponding 
weights W = [1,-1 and 1]. 

In other words, if the T-vector contains a value of 8 ms and 
the sample rate is 10 kHz, we have to fill the index number 80 
(8*10) of H with the corresponding weight. Thus, any resulting 
H-vector will be longer than the generating T-vector. 

It is possible, that the delay-vector T contains some 
identical values at different places. In H, we have to add the 
corresponding weights. 

To construct H, we follow the following steps: 

a) Multiply the T-vector with the sample rate, that H will 
contain. Recall, all members of the T-vector must be integers, 
they are later index numbers in H. The length of H is larger 
than the maximum delay in T, we need max(T) to construct the 
whole, empty H-vector, we find  

length(H) = max(T).  (10) 

b) Take a delay τi of the T-vector. Add the corresponding 
weight wi (with the same index i) at the position in H that is 
defined by the index i, as in the following formula  

H(T(i)) = H(T(i)) + W(i).  (11) 

c) Do task b) for all delays and weights.  

Let’s bring this ideas into an algorithm. For automatic 
conversion of the net structure including the vectors (T,W) into 

Figure 2. 
˙˙˙ ˙˙˙ ˙˙

 Simplified abstraction of the network of Fig.1. The two cells N, N’ 

connect over branches with different delays τi and weigths wi. 
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the system transfer function H the Scilab-function H = 
trans(T,W,fs) is introduced. An additional parameter is the 
sample rate fs, it defines the delay time between subsequent 
values of the H-vector. For a better understanding of the code 
we use uppercase letters for vectors and lowercase letters for 
single numbers and values. Vectors start in Scilab with the first 
element indexed by number one (not with zero). 

function [H] = trans(T,W,fs);  

 if length(T) == length(W) then 
  T = T * fs;       // apply sample rate of H 

  T = round(T);     // T becomes index - integer 

  H = 1:max(T); H = H * 0; // create an empty H 

  for i = 1:length(T),     // for all T(i), W(i) 
    j = T(i),       // delay becomes the H-index 

    H(j) = H(j) + W(i),    // add the weight to H 

  end // for 

 else // if 
  printf('\n\nerror: T and W have different size\n'); 

 end // if  

endfunction; 

To minimize the size of the resulting transfer vector H, it is 
possible to subtract the minimum delay of T from all delays of 
T (compare with Eqn.7) 

T = T – (min(T)+1).  (12) 

The addition of +1 points to the index number one in H. 
This is comparable to removing leading zeros of H. At the end 
of H, zeros can be removed too. But going into the frequency 
domain, any changing at frontal zeros can cause problems, 
because it changes the transfer function. 

VII. APPLYING A CONVOLUTION 

Our time function y(t) can be characterized as convolution 
of the input time function x(t) and the transfer function h(t).  

y(t) = h(t) * x(t)  (13) 

Using vector/matrix style syntax for discrete convolution 
we write

2
 here 

Y = H * X,  (14) 

Y, H and X are vectors. For the computation of convolution 
within Scilab, we use the convol-function 

Y = convol(H,X).  (15) 

In mathematics and so in Scilab, the orientation of H- and 
X-vector is opposite. If we like to use unidirectional vectors, 
we should use cross-correlation instead of convolution. 

Please test the Scilab-sources (freeware) in [24] to try some 
own experiments. 

VIII. SPIKE OUTPUT 

We know different philosophical speculations about the 
general function of nerve system. The favorite in this paper is 

                                                           
2 Notation: A star (*) denotes the convolution (in analog- or matrix form). For 

matrix multiplication we use an upper dot (.). For the “dot product” of vectors 

Scilab uses the notation dot-star (.*). If necessary, we will follow this style in 

our WWW-examples.  

 

the presumption, a nerve cell fires, if it has detected the code 
that was learned before. With this suggestion, the nerve cell has 
to fire, if the input code (vector X) is identical (using 
convolution: time-inverse) to the transfer function H. The 
transfer function acts as a keyhole, the input function as the 
key. 

In other words, to implement such a nerve-like behavior, 
we are looking for an input function X, that gives a resulting Y 
in form of a Dirac-like spike of the level a²  

Y = X * H =  [ 0, 0, … a², … 0, 0]. (16) 

As solution we only find a single trivial case. If the 
resulting Y becomes a Dirac-like pulse, X and H have also to be 
one-shots. For example, for X = rev(H) = [0,a,0] we get  
Y = convol(X,H) = [0,0,a²,0,0].  

To solve our task better, we have to find powerful 
approximations.  

If we remember, that the comparable transformation of 
convolution is the cross-correlation, we find, that we get 
highest cross correlation for identical H and X. Translating to 
convolution this means, X has to be exactly the time-inverse to 
H. This might be a first result. So I wrote a rev() function [24] 
for time-inversion. 

From RADAR-technology we know useful approximations 
of comparable kind, like chirps or Barker-codes [29] to get 
sharp pulses at the end of a complex transmission chain. Using 
any Barker-code, we get best approximations for the behavior 
we need. For example, if we use the Barker-code of length 5 
the convolution is 

H = [1, 1, 1, -1, 1],   X = rev(H), (17) 
 

Y = convol(X,H) = [1, 0, 1, 0, 5, 0, 1, 0, 1].   (18) 

As longer is the Barker-code, as higher becomes the Dirac-
pulse relative to the environment. No wonder, that modern 
wireless-, GPS- and RADAR -technologies use Barker-codes 
for example in form of Direct Sequence Spread Spectrum 
(DSSS) or Pulse-Compression technologies. However, there is 
a problem: nerve systems do not have negative pulses. 

IX. FREQUENCY ANALYSIS 

Frequency analysis implies, to analyze a network with a 
Fourier series of sin- and cos-functions, corresponding to the 
Euler formula as solution of Eqn.19. This appears to be an 
antagonism for spiking networks, spikes are not sinusoidal. 
However, if we try it, we find special properties of interference 
nets, that associate with the well known existence of synapses 
of the exciting and the inhibiting type. 

To analyze frequency properties of H, we apply the z-
Transformation, substituting H(n) by F(z)  with 

z = exp(σ+jω)  to calculate the complex frequency transfer 

function. Using σ = 0, we get the Time-Discrete Fourier 
Transformation (TDFT) in frequency domain. To get the 
frequency transfer function (Fourier spectrum) F we use the 
symbolical equation  

∑
∞

−∞=

−
=

n

njj
enHeF

ωω )()( .  (19) 
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The term ωn relates to a “digital frequency” ω = 2π f/fs. 

Using Scilab [24], we write for the absolute vector of the 
Fourier spectrum F = abs(fft(H)). With some additional scaling 
we get a Fourier spectrum with identical number of coefficients 
between input vector H and output vector F.  

For example, if H has c = length(H) = 100 coefficients, the 
resulting F will get 100 coefficients from 0…fs. If H has a 
sample rate of 10 kHz, F will stop at 10 kHz. Each F-sample is 
max(F)/c = 10 kHz/100 = 100 Hz wide. To suppress Nyquist 
mirroring, we stop the plots at half the sampling frequency fs/2, 
using only the lower half of the coefficients of F, see example 
in Fig.5 and Scilab examples in [24]. 

Doing some exercises, we find a behavior that is well 
known  in systems theory: Using an unipolar input X and an 
unipolar transfer function H (unipolar means with a level range 
between zero and one), without exception the FFT-output has 
its maximum at the lowest frequency. It is clear, that the DC-
power of an unsymmetrical time function is high. What can this 
mean? 

In our case it is higher than every convolution result at 
higher frequencies. In other words: it is generally impossible to 
use unipolar networks for series- or frequency analysis – 
anyway. We need a bipolar system with positive and negative 
weights to analyze serial codes (sounds etc.). We imagine the 
problems,  that Fuzzy Sets or Artificial Neural Networks have, 
using unipolar functions only.  

X. UNIPOLAR OR BIPOLAR SIGNAL LEVELS? 

Thinking about exciting and inhibiting synapses in nerve 
system, a question is, how to model them simple and adequate 
on a highest abstraction level in systems theory. The existence 
of the exciting, postsynaptic potential (EPSP) and the inhibiting 
postsynaptic potential (IPSP) (see for a good introduction for 
example [28]) allows a bipolar transfer function H with 
exciting and inhibiting weights. But it makes no sense to 
introduce bipolar inputs X. We only know unipolar, positive 
pulses in nerve systems.  

By contrast, Barker-codes [29] use the bipolar level interval 
in the range {-1…0…1}, nerve pulses are unipolar in the range 
{0…1}. Convolution of codes using unipolar signals is less 
efficient compared to bipolar codes, for example in the case  

H = [1, 1, 1, 0, 1],   X = rev(H), (20) 
 

Y = convol(X,H) = [1, 1, 2, 2, 4, 2, 2, 1, 1].   (21) 

In comparison to equations 17 and 18 the resulting pulse is 
less sharp.  

Considering all aspects, it seems necessary to introduce a 
bipolar transfer function H (for synaptic weights) but an 
unipolar transmission function X over branches to model nerve 
pulses.  To test this, a random bipolar H can generate an 
unipolar X using the Scilab-function clip(),  

X = rev( clip (H, minlevel, maxlevel)).  (22) 

This function sets all coefficient values below minlevel to 
minlevel (here zero).  

Trials with identical random noise show a nice surprise: 
Fig. 3 shows, that the resulting spike shape is not really 
significant influenced using bipolar or unipolar inputs for X. 

But using an unipolar value range for both, X and H, we find 
significant, worse results, especially the DC-power in the FFT, 
referring to the slowly growing convolution values near the 
peak. 

For nerve nets this could mean, that evolutionary 
introduction of bipolar transfer functions with inhibition and 
excitation brings (beside the frequency selectivity) a high win 
in the ability, to built a robust and frequency selective 
information processing.  

By contrast, the introduction of additional negative pulses 
would bring a further small win, but the absence of negative 
pulses in animal kingdom shows, evolution decided to see this 
as not really significant.  

XI. INTERPRETING BURSTS 

Is it possible to reconstruct a net structure with vectors T 
and W from a given pulse response H? Trying it we get the net 
vectors back in sorted order. The Scilab-algorithm is the 
opposite to the construction of the transfer function. Each index 
in H corresponds via the sample rate with a delay in T. The H-
value at that index is the corresponding weight in W.  

function [T,W] = net(H,fs); // returns T and W 

    j=1; 

    for i=1:length(H) // H index i 
        if H(i) == 0 then ; // do nothing 

        else  // write the value to W, the index to T 

            W(j) = H(i); 

            T(j) = i; 
            j = j+1; 

        end; // if 

    end; // for 

    T = T ./ fs;          // remove sample rate  
    T = T - min(T);       // scaling 

endfunction; 

  Different publications on nerve system show uncountable 
measurements of bursts in nerve system [26,28], many papers 
on measurements report them. The question is: has bursting 
something to do with net structure and the vectors T and W? 

Supposing, the reason of a burst is a network with [T,W], 
the delay and weight structure of that net creates a transfer 
function H directly as a burst. In return, the measurement of a 
burst can show the transfer function of a partial net! The 
function [T,W] = net(H,fs) gives the net structure back, if we 
give a burst measure into H, fs is again the sampling rate.  

To summarize bursting and convolution:  

Inspecting a net structure [T,W] comparable to Fig.2 it is 
possible to convert it into the transfer function H and vice 
versa.  

We name a Dirac-like delta function (a spike or pulse of 
variable tallness) with D (it is a vector, thus we write it 
uppercase). 

Open a door: If input X is the key for the keyhole H with  
X = rev(H), then a spike D appears at the output Y, 

X * H = Y:  rev(H) * H = D. (23) 

Pulse response: Is X a single one-shot (P), the convolution 
with H gives the pulse response (this is H ) at the output 

X * H = Y: P * H = H (24) 
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XII. EXAMPLE  

Fig. 4 shows the Scilab-result of a convolution example, if 
the key is the right one. We find the input function X opposite 
to the transfer function H. In the last row, Scilab calculates our 
threshold function. Using a single spike as input, the example 
can show, why the Laplacian transfer function is called the 
“pulse response”.  

Using a sampling frequency of f = 1 kHz (1 ms) the delay 
mask T contains delays of 3 branches in milliseconds 

]8,3,5[],,[ 321 == τττT .  (25) 

The corresponding weight vector W of inputs has the values 

]1,5.0,1[],,[ 321 == wwwW . (26) 

A positive value stands for excitation, a negative for 
inhibition of the input.  

The delay vector is robust against addition or subtraction of 
constants, the response code will not change.  

FIR-form, reducing form: To get a minimum vector length 
for the transfer function H, delays reduces by the minimum 

delay τ2 = 3. After index sorting we get 

]5,2,0[],,[ 321 == RRRRT τττ . (27) 

To get the transfer function H, the weights place at the 
corresponding delay number, that means a weight wi is to set at 

the position of the index corresponding to delay τi  

]1,1,5[.],,[ 321 == RRRR wwwW . (28) 

This is calling the reduced form or FIR-form of the net 
structure. Automatically, the reducing form results of any 
reconstruction with function [T,W] = net(H,fs). 

We recall, H is a linear spaced time axis, subdivided by the 
sampling clock, the difference between subsequent samples 
equals the inverse sample rate 1/fs, here 1 ms. The index of H 
is then 

...],9,8,7,6,5,4,3,2,1[...)( =Hindex . (29) 

The original, corresponding weights occupy the positions 
(5, 3, 8), ignoring leading and trailing zeros we get 

),0,0,,0,( 312 wwwH = .   (30) 

The result is the transfer function H of the network 

( )1,0,0,1,0,5.0=H ,  (31) 

see Fig.4. The result is the same, using reduced vectors Tr, 
Wr or original vectors T,W. 

Doing the convolution we use an equal spaced input vector 
X with identical sample rate. If the vectors X and H differ in 

size, the shorter vector fills in the Scilab-example with zeros. 
The plot sizes between input and output differ, convolution of 
length(X) = n, length(H) = m gives length(Y) = n + m – 1, we 
fill the rest with a zero vector. 

If the output is not normalized by the inverse number of 
inputs 1/n, finally, we append any threshold function U(k) to 
reconstruct the output level. The sum of weights is w = (.5 + 1 
+ 1) = 2.5. Epsilon should be smaller than the smallest weight 

(0.5). Choosing ε = 0.3, the threshold function works correctly. 
If the output function comes in the region of the sum of 

weights (ω−ε), the output fires. Epsilon (ε) has to be smaller 
than the smallest weight.  
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We find, that any 1/n norm is not really a best solution. 
Using different variable types and vectors, the method  

(ε 
. 
max(Y)) seems to be more robust for wide variations of 

tasks, see Scilab-code [24]. 

In the example Fig. 4, we use a nearly identical, but 
opposite vector X as a key, the output of the neuron gives a 
single spike: the neuron tells us: “I understood the serial 
code!”. 

Besides GIF- and PS-plot outputs the Scilab-procedure 
transfunc.sce (download [24]) gives an additional text-file 
output with some system values: 

conv_3Spikes_noclip_1kHz_all.txt 

sample rate      fs = 1 kHz 
original delays   T = [5 3 8] 

original weights  W = [1 0.5 1] 

reduced delays   Tr = [0 2 5] 

reduced weights  Wr = [0.5 1 1] 
transfer fct H = [0 0 0 0.5 0 1 0 0 1 0] 

key input    X = [0 1 0 0 1 0 0.5 0 0 0] 

output Y = [0 0 0 0 0 1 0 1 1 0 2 0 0 1 0 1 0 0 0] 

thresh U = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0] 
abs(F) =  

[2.5 1.4 0.5 1.1 1.8 1.9 0.5 1.9 1.8 1.1 0.5 1.4] 

generator: transfuncnet.sce, 13-Aug-2013 
www.gfai.de/~heinz/techdocs 

Increasing the sample rate fs, the transfer function becomes 
proportional longer. Setting fs = 10 kHz we get a different H 
with weights at the index positions (50, 30, 80) or for the 
reduced and sorted vector at (0, 20, 50). 

If the transfer function is periodic (see web-examples in 
[24]) a Fourier analysis can produce interesting results. The 
Scilab code generates in a last step a new plot window, 
showing the transfer function H and a rectangular, absolute 
Fourier window of H, see example in Fig.5. 

XIII. CONCLUSION 

To characterize abstract properties of nerve networks in 
time- and frequency domain, following [16], Kap.8b, p.181 an 
elementary net can be simplified using a linear, time-invariant 
(LTI-) system description containing a delay vector T and a 
weight vector W, Fig.1 and Fig.2. 
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A procedure [H] = trans(T,W,fs) calculates the (time-
discrete) transfer function H (pulse response) of the net from 
delay vector T (delay mask) and weight vector W.  

The inverse procedure [T,W] = net(H,fs) reconstructs the 
net structure [T,W]  from transfer function H. 

Interpreting burst measurements of nerve nets as transfer 
function H of a partial network, the reconstruction of the net 
structure [T,W] is possible. 

An example shows, how the (delay) structure of the net 
codes its serial behavior. Weights are the exciting or inhibiting 
connections, Fig.4. 

Inspecting frequency domain of unipolar and bipolar H and 
X,  the maximum DC-level appears for nets with unipolar input 
vector X and unipolar transfer function H. In this sight, 
unipolar nets, common in ANN and Fuzzy theories, do not 
have the ability to detect serial codes or frequencies. 

Analyzing convolutions with bipolar and unipolar signal 
levels of interfering time-functions the natural, mixed usage of 
unipolar inputs (positive spikes) and bipolar transfer functions 
(exciting and inhibiting) seems to be an interesting compromise 
between pure bipolar (+1…-1, best) and pure unipolar (0…1, 
worse) levels, Fig.3. 

Find Scilab code for the given exercises and different 
convolution examples with interference nets on the website 
[24].  
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Figure 3. 
˙˙˙ ˙˙˙ ˙˙

 Spike detection by convolution of X and H with different signal levels, X is a time-reversal of H, X = rev(H). H has been produced by a random noise 

generator, it is 240 samples long. The level limitation stands in curly brackets {}. Case a) shows unipolar convolution, case b) shows bipolar convolution. Case c) 

shows mixed, nerve like vectors, X is unipolar, while H is bipolar. Case d) shows the FFT of unipolar H. The high DC-Potential (see the arrow) produces in the 

FFT a maximum at zero Hertz, prohibiting any serial code detection.. Case e) is the FFT of a bipolar H. Generation with clipping_conv.sce, download [24] 
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Figure 4. 
˙˙˙ ˙˙˙ ˙˙

 Scilab-plots of an unipolar network. If the key X matches the keyhole code, a single spike appears at the output. From top to bottom: 1) automatically 

generated transfer function H with the reduced vectors Tr and Wr; 2) a best key X for the hole H; 3) interference of X and H as convolution; 4) resulting output of 

the network after the threshold function; 5) transfer function again; 6) Fourier-Transformation of the transfer function H. The mean of H has a significant DC-

potential, so the FFT has its maximum at zero Hertz. Frequency selection is practically impossible using such unipolar nets with a dominant low-pass.  

Generation with transfuncnet.sce, download [24]. 
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Figure 5. 
˙˙˙ ˙˙˙ ˙˙

 Scilab-plots of a mixed, nerve-like network with bipolar transfer function H and unipolar input X. From top to bottom: 1) automatically generated 

transfer function H with the reduced vectors Tr and Wr; 2) a best unipolar key X for the bipolar hole H; 3) interference of X and H as convolution; 4) resulting 

output of the network after the threshold function; 5) transfer function again; 6) Fourier-Transformation of the bipolar transfer function H showing a high-pass 

response. Generation with transfuncnet.sce, download [24]. 


