(Conversion of animationen.ppt)
Only successful pathways are drawn.
Fig.1: The first interference circuit. Jeffres L. A.: A place theory of sound localization (of barn owl). J. Comp. Physiol. Psychol. 41 [1948]: 35-39.
Fig.2: EEG-experiment to observe the wave character of nerve pulses. Dr. Torsten Griepentrog; Dr. Gerd Heinz, 16.12.1992, Klinikum Teupitz
Fig.3: Simplest self-interference projection circuit using pulses on the title page of the book "Neuronale Interferenzen", G. Heinz, June 1993
Fig.4: Simplified interpretation of Jeffres results. But the circuit works only with sharp pulses or noise, not with sinoidal time-functions, prefered by Mark. Konishi, Mazakazu (Mark): Die Schallortung der Schleiereule (The sound localization of barn owl). Spektrum der Wissenschaft, Juni 1993, S. 58 ff.
Fig.5: Hyperbolic interference projections. Wavefronts and communication within the "homunculus". Model by G. Heinz, Neuronale Interferenzen 1993.
Fig.6: Self interference condition and neighborhood inhibition at nerve nets. There, where all partial impulses arrive at the same time, the probability of an excitation is maximum. Model by G. Heinz.
Fig.7: Selbst-Interferenz und Nachbarschaftshemmung bei Nervennetzen. Dort, wo alle Partialimpulse gleichzeitig ankommen, ist die Wahrscheinlichkeit einer Erregung maximal. Modell von G. Heinz.
Fig.8: Mask-algorithm for interference reconstruction, used for the invention of Acoustic Photo- and Cinematography 1994 with software Bio-Interface.
Fig.9: Conjunctive Projection of a "g" and a "h" to "gh" as example for a brain association. Software Bio-Interface, 1995.
Fig.10: Colour waves on squids. Packard, A.: Organization of cephalopod chromatophore systems: a neuromuscular image-generator. In: Abbott, N.J., Williamson, R., Maddock, L., Cephalopod Neurobiology, Oxford University Press, 1995, pp.331-367
top
Mail to info@gheinz.de
Besucher seit 6. Dez. 2021: